Abstract
Abstract
Background
Although there has been a well-established association between overweight-obesity and hypertension, whether such associations are heterogeneous for South Asian populations, or for different socioeconomic groups is not well-known. We explored the associations of overweight and obesity using South Asian cut-offs with hypertension, and also examined the relationships between body mass index (BMI) and hypertension in various socioeconomic subgroups.
Methods
We analysed the recent Demographic and Health Survey (DHS) data from Bangladesh, India, and Nepal, with a total of 821,040 men and women. Hypertension was defined by 2017 ACC/AHA cut-offs and by Joint National Committee 7 (JNC7) cut-offs for measured blood pressure and overweight and obesity were defined by measured height and weight. We used multiple logistic regressions to estimate the odds ratios (ORs) with 95% confidence intervals (CIs) of hypertension for overweight and obesity as well as for each 5-unit increase in BMI.
Results
The prevalence of hypertension using JNC7 cut-offs among participants increased by age in all three countries. The prevalence ranged from 17.4% in 35–44 years to 34.9% in ≥55 years in Bangladesh, from 4.6% in 18–24 years to 28.6% in 45–54 years in India, and from 3.8% in 18–24 years to 39.2% in ≥55 years in Nepal. Men were more likely to be hypertensive than women in India and Nepal, but not in Bangladesh. Overweight and obesity using both WHO and South Asian cut-offs were associated with higher odds of hypertension in all countries. For each 5 kg/m2 increase in BMI, the ORs for hypertension were 1.79 (95% CI: 1.65–1.93), 1.59 (95% CI: 1.58–1.61), and 2.03 (95% CI: 1.90–2.16) in Bangladesh, India, and Nepal, respectively. The associations between BMI and hypertension were consistent across various subgroups defined by sex, age, urbanicity, educational attainment and household’s wealth index.
Conclusions
Our study shows that the association of BMI with hypertension is stronger for South Asian populations at even lower cut-offs points for overweight and obesity. Therefore, public health measures to reduce population-level reduction in BMI in all population groups would also help in lowering the burden of hypertension.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Forouzanfar Mohammad H, et al. "Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 2016;388:10053(2016):1659–724.
2. Lawes CMM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 2001. Lancet (London, England). 2008;371:1513–8.
3. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet (London, England). 2005;365:217–23.
4. Zhou B, Bentham J, Di Cesare M, Bixby H, Danaei G, Cowan MJ, et al. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet. 2017;389:37–55.
5. Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–50.
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献