Changes in body core and body surface temperatures during prolonged swimming in water of 10°C—a case report

Author:

Rüst Christoph Alexander,Knechtle Beat,Rosemann Thomas

Abstract

AbstractBackgroundThis case report describes an experienced open-water ultra-endurance athlete swimming in water of 9.9°C for 6 h and 2 min.MethodsBefore the swim, anthropometric characteristics such as body mass, body height, skinfold thicknesses, and body fat were determined. During and after the swim, body core (rectum) and body surface (forearm and calf) temperatures were continuously recorded.ResultsThe swimmer (53 years old, 110.5 kg body mass, 1.76 m body height, 34.9% body fat, and a body mass index of 35.7 kg/m2) achieved a total distance of 15 km while swimming at a mean speed of 2.48 km/h, equal to 0.69 m/s, in water of 9.9°C. Body core temperature was at 37.8°C before the swim, increased to a maximum of 38.1°C after approximately 20 min of swimming, and then decreased continuously to 36.3°C upon finishing the swim. The lowest body core temperature was 36.0°C between 35 and 60 min after finishing the swim. Sixty minutes after the swim, the body core temperature continuously rose to 36.5°C where it remained. At the forearm, the temperature dropped to 19.6°C after approximately 36 min of swimming and decreased to 19.4°C by the end of the swim. The lowest temperature at the forearm was 17.6°C measured at approximately 47 min before the athlete stopped swimming. At the calf, the temperature dropped to 13.0°C after approximately 24 min of swimming and decreased to 11.9°C at the end of the swim. The lowest temperature measured at the calf was 11.1°C approximately 108 min after the start. In both the forearm and the calf, the skin temperature continuously increased after the swim.ConclusionsThis case report shows that (1) it is possible to swim for 6 h in water of 9.9°C and that (2) the athlete did not suffer from hypothermia under these circumstances. The high body mass index, high body fat, previous experience, and specific preparation of the swimmer are the most probable explanations for these findings.

Publisher

Springer Science and Business Media LLC

Subject

Physiology (medical),Orthopedics and Sports Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3