Author:
Rüst Christoph Alexander,Knechtle Beat,Rosemann Thomas
Abstract
AbstractBackgroundThis case report describes an experienced open-water ultra-endurance athlete swimming in water of 9.9°C for 6 h and 2 min.MethodsBefore the swim, anthropometric characteristics such as body mass, body height, skinfold thicknesses, and body fat were determined. During and after the swim, body core (rectum) and body surface (forearm and calf) temperatures were continuously recorded.ResultsThe swimmer (53 years old, 110.5 kg body mass, 1.76 m body height, 34.9% body fat, and a body mass index of 35.7 kg/m2) achieved a total distance of 15 km while swimming at a mean speed of 2.48 km/h, equal to 0.69 m/s, in water of 9.9°C. Body core temperature was at 37.8°C before the swim, increased to a maximum of 38.1°C after approximately 20 min of swimming, and then decreased continuously to 36.3°C upon finishing the swim. The lowest body core temperature was 36.0°C between 35 and 60 min after finishing the swim. Sixty minutes after the swim, the body core temperature continuously rose to 36.5°C where it remained. At the forearm, the temperature dropped to 19.6°C after approximately 36 min of swimming and decreased to 19.4°C by the end of the swim. The lowest temperature at the forearm was 17.6°C measured at approximately 47 min before the athlete stopped swimming. At the calf, the temperature dropped to 13.0°C after approximately 24 min of swimming and decreased to 11.9°C at the end of the swim. The lowest temperature measured at the calf was 11.1°C approximately 108 min after the start. In both the forearm and the calf, the skin temperature continuously increased after the swim.ConclusionsThis case report shows that (1) it is possible to swim for 6 h in water of 9.9°C and that (2) the athlete did not suffer from hypothermia under these circumstances. The high body mass index, high body fat, previous experience, and specific preparation of the swimmer are the most probable explanations for these findings.
Publisher
Springer Science and Business Media LLC
Subject
Physiology (medical),Orthopedics and Sports Medicine,Physiology
Reference39 articles.
1. Nevill AM, Whyte GP, Holder RL, Peyrebrune M: Are there limits to swimming world records?. Int J Sports Med. 2007, 28: 1012-1017. 10.1055/s-2007-965088.
2. Eichenberger E, Knechtle B, Knechtle P, Rüst CA, Rosemann T, Lepers R: No gender difference in peak performance in ultra-endurance swimming performance—analysis of the ‘Zurich 12-h Swim’ from 1996 to 2010. Chinese Journal of Physiology. 2012, 55: 346-351.
3. Brannigan D, Rogers IR, Jacobs I, Montgomery A, Williams A, Khangure N: Hypothermia is a significant medical risk of mass participation long-distance open water swimming. Wilderness Environ Med. 2009, 20: 14-18. 10.1580/08-WEME-OR-214.1.
4. Castro RR, Mendes FS, Nobrega AC: Risk of hypothermia in a new Olympic event: the 10-km marathon swim. Clinics (Sao Paulo). 2009, 64: 351-356. 10.1590/S1807-59322009000400014.
5. Keatinge WR, Prys-Roberts C, Cooper KE, Honour AJ, Haight J: Sudden failure of swimming in cold water. Br Med J. 1969, 22: 480-483.
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献