A critical stress model for cell motility

Author:

Mehrayin Mehrnush,Farmanzad Farhad,Mozafari Masoud,Vashaee Daryoosh,Tayebi Lobat

Abstract

Abstract A detailed theoretical model that combines the conventional viscoelastic continuum description of cell motion with a dynamic active stress is presented. The model describes the ameboid cells movement comprising of protrusion and adhesion of the front edge followed by detachment and movement of the tail. Unlike the previous viscoelastic descriptions in which the cell movement is steady, the presented model describes the “walking” of the cell in response to specific active stress components acting separately on the front and rear of the cell. In this locomotive model first the tail of the cell is attached to the substrate and active stress is applied to the front of the cell. Consequently, the stress in the tail increases. When the stress in the tail exceeds a critical value, namely critical stress, the conditions are updated so that the front is fixed and the tail of the cell is detached from the substrate and moves towards the front. Consequently, the stress in the tail decreases. When the stress goes to zero, the starting conditions become active and the process continues. At start the cell is stretched and its length is increased as the front of cell migrates more than the rear. However, after several steps the front and rear move equally and the cell length stays constant during the movement. In this manuscript we analyzed such cell dynamics including the length variation and moving velocity. Finally, by considering this fact that at the single-cell level, interactions with the extracellular environment occur on a nanometer length scale, the value of critical stress was estimated.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Modelling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3