Author:
Gupta Shakti,Aslakson Eric,Gurbaxani Brian M,Vernon Suzanne D
Abstract
Abstract
Background
The body's primary stress management system is the hypothalamic pituitary adrenal (HPA) axis. The HPA axis responds to physical and mental challenge to maintain homeostasis in part by controlling the body's cortisol level. Dysregulation of the HPA axis is implicated in numerous stress-related diseases.
Results
We developed a structured model of the HPA axis that includes the glucocorticoid receptor (GR). This model incorporates nonlinear kinetics of pituitary GR synthesis. The nonlinear effect arises from the fact that GR homodimerizes after cortisol activation and induces its own synthesis in the pituitary. This homodimerization makes possible two stable steady states (low and high) and one unstable state of cortisol production resulting in bistability of the HPA axis. In this model, low GR concentration represents the normal steady state, and high GR concentration represents a dysregulated steady state. A short stress in the normal steady state produces a small perturbation in the GR concentration that quickly returns to normal levels. Long, repeated stress produces persistent and high GR concentration that does not return to baseline forcing the HPA axis to an alternate steady state. One consequence of increased steady state GR is reduced steady state cortisol, which has been observed in some stress related disorders such as Chronic Fatigue Syndrome (CFS).
Conclusion
Inclusion of pituitary GR expression resulted in a biologically plausible model of HPA axis bistability and hypocortisolism. High GR concentration enhanced cortisol negative feedback on the hypothalamus and forced the HPA axis into an alternative, low cortisol state. This model can be used to explore mechanisms underlying disorders of the HPA axis.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Modeling and Simulation
Cited by
86 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献