Author:
Strippoli Pierluigi,Canaider Silvia,Noferini Francesco,D'Addabbo Pietro,Vitale Lorenza,Facchin Federica,Lenzi Luca,Casadei Raffaella,Carinci Paolo,Zannotti Maria,Frabetti Flavia
Abstract
Abstract
Background
Formal description of a cell's genetic information should provide the number of DNA molecules in that cell and their complete nucleotide sequences. We pose the formal problem: can the genome sequence forming the genotype of a given living cell be known with absolute certainty so that the cell's behaviour (phenotype) can be correlated to that genetic information? To answer this question, we propose a series of thought experiments.
Results
We show that the genome sequence of any actual living cell cannot physically be known with absolute certainty, independently of the method used. There is an associated uncertainty, in terms of base pairs, equal to or greater than μs (where μ is the mutation rate of the cell type and s is the cell's genome size).
Conclusion
This finding establishes an "uncertainty principle" in genetics for the first time, and its analogy with the Heisenberg uncertainty principle in physics is discussed. The genetic information that makes living cells work is thus better represented by a probabilistic model rather than as a completely defined object.
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Modelling and Simulation
Reference40 articles.
1. Strachan T, Read AP: Organization of the human genome. Human Molecular Genetics. Edited by: Strachan T, Read AP. 1999, Oxford: Bios Press, 139-142. 2
2. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC: Initial sequencing and analysis of the human genome. Nature. 2001, 409: 860-921. 10.1038/35057062.
3. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ: The sequence of the human genome. Science. 2001, 291: 1304-1351. 10.1126/science.1058040.
4. Youssoufian H, Pyeritz RE: Human genetics and disease: Mechanisms and consequences of somatic mosaicism in humans. Nat Rev Genet. 2002, 3: 748-758. 10.1038/nrg906.
5. Grizzi F, Chiriva-Internati M: The complexity of anatomical systems. Theor Biol Med Model. 2005, 2: 26-10.1186/1742-4682-2-26.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献