A model for generating circadian rhythm by coupling ultradian oscillators

Author:

Paetkau Verner,Edwards Roderick,Illner Reinhard

Abstract

Abstract Background Organisms ranging from humans to cyanobacteria undergo circadian rhythm, that is, variations in behavior that cycle over a period about 24 hours in length. A fundamental property of circadian rhythm is that it is free-running, and continues with a period close to 24 hours in the absence of light cycles or other external cues. Regulatory networks involving feedback inhibition and feedforward stimulation of mRNA transcription and translation are thought to be critical for many circadian mechanisms, and genes coding for essential components of circadian rhythm have been identified in several organisms. However, it is not clear how such components are organized to generate a circadian oscillation. Results We propose a model in which two independent transcriptional-translational oscillators with periods much shorter than 24 hours are coupled to drive a forced oscillator that has a circadian period, using mechanisms and parameters of conventional molecular biology. Furthermore, the resulting circadian oscillator can be entrained by an external light-dark cycle through known mechanisms. We rationalize the mathematical basis for the observed behavior of the model, and show that the behavior is not dependent on the details of the component ultradian oscillators but occurs even if quite generalized basic oscillators are used. Conclusion We conclude that coupled, independent, transcriptional-translational oscillators with relatively short periods can be the basis for circadian oscillators. The resulting circadian oscillator can be entrained by 24-hour light-dark cycles, and the model suggests a mechanism for its evolution.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3