Nucleic acid chaperons: a theory of an RNA-assisted protein folding

Author:

Biro Jan C

Abstract

Summary Background Proteins are assumed to contain all the information necessary for unambiguous folding (Anfinsen's principle). However, ab initio structure prediction is often not successful because the amino acid sequence itself is not sufficient to guide between endless folding possibilities. It seems to be a logical to try to find the "missing" information in nucleic acids, in the redundant codon base. Results mRNA energy dot plots and protein residue contact maps were found to be rather similar. The structure of mRNA is also conserved if the protein structure is conserved, even if the sequence similarity is low. These observations led me to suppose that some similarity might exist between nucleic acid and protein folding. I found that amino acid pairs, which are co-located in the protein structure, are preferentially coded by complementary codons. This codon complementarity is not perfect; it is suboptimal where the 1st and 3rd codon residues are complementary to each other in reverse orientation, while the 2nd codon letters may be, but are not necessarily, complementary. Conclusion Partial complementary coding of co-locating amino acids in protein structures suggests that mRNA assists in protein folding and functions not only as a template but even as a chaperon during translation. This function explains the role of wobble bases and answers the mystery of why we have a redundant codon base.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Modeling and Simulation

Reference25 articles.

1. Anfinsen CB, Redfield RR, Choate WI, Page J, Carroll WR: Studies on the gross structure, cross-linkages, and terminal sequences in ribonuclease. J Biol Chem. 1954, 207: 201-210.

2. Levinthal C: How to fold graciously in Mossbauer spectroscopy in biological systems. Proceedings of a Meeting held at Allerton House, Monticello, IL. Edited by: Debrunner P, Tsibris JCM, Munck E. 1969, Urbana, IL: University of Illinois Press, 22-24.

3. Klepeis JL, Floudas AC: ASTRA-FOLD: a combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biochem J. 2003, 85: 2119-2146.

4. Walter S, Buchner J: Molecular chaperones – cellular machines for protein folding. Angew Chem Int Ed Engl. 2002, 41: 1098-1113. 10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9.

5. Komar AA, Kommer A, Krasheninnikov IA, Spirin AS: Cotranslational folding of globin. J Biol Chem. 1997, 272: 10646-10651. 10.1074/jbc.272.16.10646.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3