Determination of the optimal tubulin isotype target as a method for the development of individualized cancer chemotherapy

Author:

Ravanbakhsh Siamak,Gajewski Melissa,Greiner Russell,Tuszynski Jack A

Abstract

Abstract Background As microtubules are essential for cell growth and division, its constituent protein β-tubulin has been a popular target for various treatments, including cancer chemotherapy. There are several isotypes of human β-tubulin and each type of cell expresses its characteristic distribution of these isotypes. Moreover, each tubulin-binding drug has its own distribution of binding affinities over the various isotypes, which further complicates identifying the optimal drug selection. An ideal drug would preferentially bind only the tubulin isotypes expressed abundantly by the cancer cells, but not those in the healthy cells. Unfortunately, as the distributions of the tubulin isotypes in cancer cells overlap with those of healthy cells, this ideal scenario is clearly not possible. We can, however, seek a drug that interferes significantly with the isotype distribution of the cancer cell, but has only minor interactions with those of the healthy cells. Methods We describe a quantitative methodology for identifying this optimal tubulin isotype profile for an ideal cancer drug, given the isotype distribution of a specific cancer type, as well as the isotype distributions in various healthy tissues, and the physiological importance of each such tissue. Results We report the optimal isotype profiles for different types of cancer with various routes of delivery. Conclusions Our algorithm, which defines the best profile for each type of cancer (given the drug delivery route and some specified patient characteristics), will help to personalize the design of pharmaceuticals for individual patients. This paper is an attempt to explicitly consider the effects of the tubulin isotype distributions in both cancer and normal cell types, for rational chemotherapy design aimed at optimizing the drug’s efficacy with minimal side effects.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3