Indications that "codon boundaries" are physico-chemically defined and that protein-folding information is contained in the redundant exon bases

Author:

Biro Jan Charles

Abstract

Abstract Background All the information necessary for protein folding is supposed to be present in the amino acid sequence. It is still not possible to provide specific ab initio structure predictions by bioinformatical methods. It is suspected that additional folding information is present in protein coding nucleic acid sequences, but this is not represented by the known genetic code. Results Nucleic acid subsequences comprising the 1st and/or 3rd codon residues in mRNAs express significantly higher free folding energy (FFE) than the subsequence containing only the 2nd residues (p < 0.0001, n = 81). This periodic FFE difference is not present in introns. It is therefore a specific physico-chemical characteristic of coding sequences and might contribute to unambiguous definition of codon boundaries during translation. The FFEs of the 1st and 3rd residues are additive, which suggests that these residues contain a significant number of complementary bases and that may contribute to selection for local RNA secondary structures in coding regions. This periodic, codon-related structure-formation of mRNAs indicates a connection between the structures of exons and the corresponding (translated) proteins. The folding energy dot plots of RNAs and the residue contact maps of the coded proteins are indeed similar. Residue contact statistics using 81 different protein structures confirmed that amino acids that are coded by partially reverse and complementary codons (Watson-Crick (WC) base pairs at the 1st and 3rd codon positions and translated in reverse orientation) are preferentially co-located in protein structures. Conclusion Exons are distinguished from introns, and codon boundaries are physico-chemically defined, by periodically distributed FFE differences between codon positions. There is a selection for local RNA secondary structures in coding regions and this nucleic acid structure resembles the folding profiles of the coded proteins. The preferentially (specifically) interacting amino acids are coded by partially complementary codons, which strongly supports the connection between mRNA and the corresponding protein structures and indicates that there is protein folding information in nucleic acids that is not present in the genetic code. This might suggest an additional explanation of codon redundancy.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Modelling and Simulation

Reference37 articles.

1. Anfinsen CB, Redfield RR, Choate WI, Page J, Carroll WR: Studies on the gross structure, cross-linkages, and terminal sequences in ribonuclease. J Biol Chem. 1954, 207: 201-210.

2. Levinthal C: How to fold graciously in Mossbauer spectroscopy in biological systems. Proceedings of a Meeting held at Allerton House, Monticello, IL. Edited by: Debrunner P, Tsibris JCM, Munck E. 1969, Urbana, IL: University of Illinois Press, 22-24.

3. Klepeis JL, Floudas AC: ASTRA-FOLD: a combinatorial and global optimization framework for ab initio prediction of three-dimensional structures of proteins from the amino acid sequence. Biochem J. 2003, 85: 2119-2146.

4. Walter S, Buchner J: Molecular chaperones – cellular machines for protein folding. Angew Chem Int Ed Engl. 2002, 41: 1098-1113. 10.1002/1521-3773(20020402)41:7<1098::AID-ANIE1098>3.0.CO;2-9.

5. Komar AA, Kommer A, Krasheninnikov IA, Spirin AS: Cotranslational folding of globin. J Biol Chem. 1997, 272: 10646-10651. 10.1074/jbc.272.16.10646.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3