The involvement of krüppel-like transcription factor 2 in megakaryocytic differentiation induction by phorbol 12-myrestrat 13-acetate

Author:

Wang Zhen,Liu Zhongwen,Zhou Pan,Niu Xiaona,Sun Zhengdao,He Huan,Zhu Zunmin

Abstract

Abstract Background Megakaryocytic differentiation is a complicated process regulated by a series of transcription factors in a context- and stage-dependent manner. Recent studies have suggested that krüppel-like transcription factor 2 (KLF2) is involved in the control of embryonic erythroid precursor cell differentiation and maturation. However, the function and mechanism of KLF2 in regulating megakaryocytic differentiation remain unclear. Methods The expression patterns of krüppel-like transcription factors (KLFs) during megakaryocytic differentiation were identified from public databases. Phorbol 12-myristate 13-acetate (PMA) treatment of the myeloid-erythroid-leukemic cell lines K562 and HEL were used as cellular megakaryocytic differentiation models. A lentiviral transduction system was utilized to achieve the goal of amplifying or reducing KLF2. The expression of KLF2 was examined using real-time PCR and western blot. The impact of KLF2 on the megakaryocytic differentiation of K562 cells was examined by flow cytometry, Giemsa staining, Phalloidin staining and western blot. RNA-sequencing (RNA-seq) and chromatin immunoprecipitation-sequencing (ChIP-seq) technologies were used to identify the KLF2-regulated targets. Results KLF2 is increased in the maturation process of megakaryocytes. KLF2 overexpression accelerated the PMA-induced megakaryocytic differentiation, as reflected by an increased percentage of CD41/CD61 cells, an increased number of polyploid cells, and an elevated expression of P21 and P27. KLF2 knockdown exhibited the opposite results, indicating that KLF2 knockdown suppressed the megakaryocytic differentiation. Further, combination of the RNA-seq and ChIP-seq results suggested that chimerin 1 (CHN1) and potassium voltage-gated channel subfamily Q member 5 (KCNQ5) may be target genes regulated of KLF2. Both CHN1 and KCNQ5 knockdown could block the megakaryocytic differentiation to some content. Conclusion This study implicated a regulatory role of KLF2 in megakaryocytic differentiation, which may suggest KLF2 as a target for illness with abnormal megakaryocytic differentiation.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3