The significant role of redox system in myeloid leukemia: from pathogenesis to therapeutic applications

Author:

Kaweme Natasha Mupeta,Zhou Shu,Changwe Geoffrey Joseph,Zhou FulingORCID

Abstract

Abstract Background Excessive generation of reactive oxygen species (ROS) in the presence of a defective antioxidant system can induce cellular damage and disrupt normal physiological functions. Several studies have revealed the unfavorable role of ROS in promoting the growth, proliferation, migration, and survival of leukemia cells. In this review study, we summarize the mechanisms of ROS production and its role in leukemogenesis, counteractive effects of antioxidants, and implicate the current ROS-dependent anticancer therapies in acute myeloid leukemia. Body The dysregulation of the redox system is known to play a significant role in the pathogenesis of leukemia. Leukemia cells generate high levels of ROS, which further increases the levels through extra pathways, including mitochondrial deoxyribonucleic mutation, leukemic oncogene activation, increased nicotinamide adenine phosphate hydrogen (NADPH), and cytochrome P450 activities. Aforementioned pathways once activated have shown to promote genomic instability, induce drug resistance to leukemia medical therapy, disease relapse and reduce survival period. The current standard of treatment with chemotherapy employs the pro-oxidant approach to induce apoptosis and promote tumor regression. However, this approach retains several deleterious effects on the subject resulting in degradation of the quality of life. Nevertheless, the addition of an antioxidant as an adjuvant drug to chemotherapy alleviates treatment-related toxicity, increases chemotherapeutic efficacy, and improves survival rates of a patient. Conclusion Acute myeloid leukemia remains a daunting challenge to clinicians. The desire to achieve the maximum benefit of chemotherapy but also improve patient outcomes is investigated. ROS generated through several pathways promotes leukemogenesis, drug resistance, and disease relapse. Chemotherapy, the mainstay of treatment, further upregulates ROS levels. Therefore, the addition of an antioxidant to leukemia medical therapy alleviates toxicity and improves patient outcomes.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3