METTL1 promotes neuroblastoma development through m7G tRNA modification and selective oncogenic gene translation

Author:

Huang Ying,Ma Jieyi,Yang Cuiyun,Wei Paijia,Yang Minghui,Han Hui,Chen Hua Dong,Yue Tianfang,Xiao Shu,Chen Xuanyu,Li Zuoqing,Tang Yanlai,Luo Jiesi,Lin Shuibin,Huang Libin

Abstract

Abstract Background Neuroblastoma (NBL) is the most common extra-cranial solid tumour in childhood, with prognosis ranging from spontaneous remission to high risk for rapid and fatal progression. Despite existing therapy approaches, the 5-year event-free survival (EFS) for patients with advanced NBL remains below 30%, emphasizing urgent necessary for novel therapeutic strategies. Studies have shown that epigenetic disorders play an essential role in the pathogenesis of NBL. However, the function and mechanism of N7-methylguanosine (m7G) methyltransferase in NBL remains unknown. Methods The expression levels of m7G tRNA methyltransferase Methyltransferase-like 1 (METTL1) were analyzed by querying the Gene Expression Omnibus (GEO) database and further confirmed by immunohistochemistry (IHC) assay. Kaplan-Meier, univariate and multivariate cox hazard analysis were performed to reveal the prognostic role of METTL1. Cell function assays were performed to evaluate how METTL1 works in proliferation, apoptosis and migration in cell lines and xenograft mouse models. The role of METTL1 on mRNA translation activity of NBL cells was measured using puromycin intake assay and polysome profiling assay. The m7G modified tRNAs were identified by tRNA reduction and cleavage sequencing (TRAC-seq). Ribosome nascent-chain complex-bound mRNA sequencing (RNC-seq) was utilized to identify the variation of gene translation efficiency (TE). Analyzed the codon frequency decoded by m7G tRNA to clarify the translation regulation and mechanism of m7G modification in NBL. Results This study found that METTL1 were significantly up-regulated in advanced NBL, which acted as an independent risk factor and predicted poor prognosis. Further in NBL cell lines and BALB/c-nu female mice, we found METTL1 played a crucial role in promoting NBL progression. Furthermore, m7G profiling and translation analysis revealed downregulation of METTL1 would inhibit puromycin intake efficiency of NBL cells, indicating that METTL1 did count crucially in regulation of NBL cell translation. With all tRNAs with m7G modification identified in NBL cells, knockdown of METTL1 would significantly reduce the levels of both m7G modification and m7G tRNAs expressions. Result of RNC-seq shew there were 339 overlapped genes with impaired translation in NBL cells upon METTL1 knockdown. Further analysis revealed these genes contained higher frequency of codons decoded by m7G-modified tRNAs and were enriched in oncogenic pathways. Conclusion This study revealed the critical role and mechanism of METTL1-mediated tRNA m7G modification in regulating NBL progression, providing new insights for developing therapeutic approaches for NBL patients.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Medicine

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3