MicroRNAs predict early complications of autologous hematopoietic stem cell transplantation

Author:

Mikulski Damian,Nowicki Mateusz,Dróżdż Izabela,Perdas Ewelina,Strzałka Piotr,Kościelny Kacper,Misiewicz Małgorzata,Stawiski Konrad,Wierzbowska Agnieszka,Fendler Wojciech

Abstract

AbstractAutologous hematopoietic stem cell transplantation (AHSCT) remains the most prevalent type of stem cell transplantation. In our study, we investigated the changes in circulating miRNAs in AHSCT recipients and their potential to predict early procedure-related complications. We collected serum samples from 77 patients, including 54 with multiple myeloma, at four key time points: before AHSCT, on the day of transplantation (day 0), and at days + 7 and + 14 post-transplantation. Through serum miRNA-seq analysis, we identified altered expression patterns and miRNAs associated with the AHSCT procedure. Validation using qPCR confirmed deviations in the levels of miRNAs at the beginning of the procedure in patients who subsequently developed bacteremia: hsa-miR-223-3p and hsa-miR-15b-5p exhibited decreased expression, while hsa-miR-126-5p had increased level. Then, a neural network model was constructed to use miRNA levels for the prediction of bacteremia. The model achieved an accuracy of 93.33% (95%CI: 68.05-99.83%), with a sensitivity of 100% (95%CI: 67.81-100.00%) and specificity of 90.91% (95%CI: 58.72-99.77%) in predicting bacteremia with mean of 6.5 ± 3.2 days before occurrence. In addition, we showed unique patterns of miRNA expression in patients experiencing platelet engraftment delay which involved the downregulation of hsa-let-7f-5p and upregulation of hsa-miR-96-5p; and neutrophil engraftment delay which was associated with decreased levels of hsa-miR-125a-5p and hsa-miR-15b-5p. Our findings highlight the significant alterations in serum miRNA levels during AHSCT and suggest the clinical utility of miRNA expression patterns as potential biomarkers that could be harnessed to improve patient outcomes, particularly by predicting the risk of bacteremia during AHSCT.

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3