Dysregulation of plasma circulating microRNAs in all-cause and cause-specific cancers: the Rotterdam Study

Author:

Shuai Yu,Zhang Xiaofang,Lavrijssen Birgit D. A.,Ikram M. Arfan,Ruiter Rikje,Stricker Bruno,Ghanbari Mohsen

Abstract

AbstractMicroRNAs (miRNAs) are small non-coding RNAs involved in post-transcriptional regulation of gene expression. Mounting evidence underscores the dysregulation of miRNAs to be associated with cancer development and progression by acting as tumour suppressors and oncogenes. However, their potential as biomarkers for early diagnosis of different cancers remains incompletely unraveled. We explored the relationship between plasma circulatory miRNAs and cancer risk within the population-based Rotterdam Study cohort. Plasma samples were collected at baseline (between 2002 and 2005) and miRNA levels were measured in 1,999 participants, including 169 prevalent cancer cases. The occurrence of cancer was assessed by continuous monitoring of medical records in 1,830 cancer-free participants until January 1, 2015. We assessed the association between incidence of five common cancers (blood, lung, breast, prostate, and colorectal) and 591 miRNAs well-expressed in plasma, using adjusted Cox proportional-hazards regression models. Our longitudinal analysis identified 13 miRNAs significantly associated with incident hematologic tumors surpassing the Bonferroni-corrected P < 8.46 × 10− 5, 12 of them (miR-6124, miR-6778-5p, miR-5196, miR-654-5p, miR-4478, miR-4430, miR-4534, miR-1915-3p, miR-4644, miR-4292, miR-7111-5p, and miR-6870-5p) were also associated with prevalent hematologic tumors in the cross-sectional analysis at the baseline. In-silico analyses of the putative target genes of 13 identified miRNAs highlighted relevant genes and pathways linked to hematologic tumors. While no significant miRNA association was found for other four studied cancers, two miRNAs (miR-3157-5p and miR-3912-5p) showed nominal association with incident of three different cancer types. Overall, this study indicates that plasma levels of several miRNAs are dysregulated in hematologic tumors, highlighting their potential as biomarkers for early diagnosis as well as being involved in the pathogenesis of blood cancers.

Funder

Erasmus MC Fellowship grant

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3