Serum soluble CD26/DPP4 titer variation is a potential prognostic biomarker in cancer therapy with a humanized anti-CD26 antibody
-
Published:2021-03-23
Issue:1
Volume:9
Page:
-
ISSN:2050-7771
-
Container-title:Biomarker Research
-
language:en
-
Short-container-title:Biomark Res
Author:
Kaneko YutaroORCID, Hatano Ryo, Hirota Naoto, Isambert Nicolas, Trillet-Lenoir Véronique, You Benoit, Alexandre Jérôme, Zalcman Gérard, Valleix Fanny, Podoll Thomas, Umezawa Yoshimi, Takao Seiichi, Iwata Satoshi, Hosono Osamu, Taguchi Tetsuo, Yamada Taketo, Dang Nam H., Ohnuma Kei, Angevin Eric, Morimoto Chikao
Abstract
Abstract
Background
The phase I trial of the humanized anti-CD26 monoclonal antibody YS110 for CD26-expressing tumors was conducted recently. The present study identifies a potential prognostic biomarker for CD26-targeted therapy based on the phase I data.
Methods
Box and Whisker plot analysis, Scatter plot analysis, Peason product moment correlation/Spearman’s rank-difference correlation, Bar graph analysis, and Receiver Operating Characteristics (ROC) were used to examine the correlation between sCD26 titer variation with YS110 administration and tumor volume change, RECIST criteria evaluation and progression free survival (PFS). Mechanism for serum sCD26 titer variation was confirmed by in vitro experimentation.
Results
Serum sCD26/DPP4 titer was reduced following YS110 administration and gradually recovered until the next infusion. Serum sCD26/DPP4 titer before the next infusion was sustained at lower levels in Stable Disease (SD) cases compared to Progressive Disease cases. ROC analysis defined the cut-off level of serum sCD26/DPP4 titer variation at day 29 pre/post for the clinical outcome of SD as tumor response or PFS. In vitro experimentation confirmed that YS110 addition reduced sCD26 production from CD26-expressing tumor and non-tumor cells.
Conclusions
Our study indicates that serum sCD26/DPP4 titer variation in the early phase of YS110 treatment is a predictive biomarker for evaluating therapeutic efficacy.
Funder
Japan Society for the Promotion of Science Ministry of Health, Labour and Welfare
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry, medical,Clinical Biochemistry,Molecular Medicine
Reference31 articles.
1. Ohnuma K, Dang NH, Morimoto C. Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol. 2008;29(6):295–301. https://doi.org/10.1016/j.it.2008.02.010. 2. Ohnuma K, Hatano R, Komiya E, Otsuka H, Itoh T, Iwao N, et al. A novel role for CD26/dipeptidyl peptidase IV as a therapeutic target. Front Biosci (Landmark Ed). 2018;23:1754–79. 3. Ho L, Aytac U, Stephens LC, Ohnuma K, Mills GB, McKee KS, Neumann C, LaPushin R, Cabanillas F, Abbruzzese JL, Morimoto C, Dang NH, et al. In vitro and in vivo antitumor effect of the anti-CD26 monoclonal antibody 1F7 on human CD30+ anaplastic large cell T-cell lymphoma Karpas 299. Clin Cancer Res. 2001;7(7):2031–40. 4. Inamoto T, Yamochi T, Ohnuma K, Iwata S, Kina S, Inamoto S, Tachibana M, Katsuoka Y, Dang NH, Morimoto C, et al. Anti-CD26 monoclonal antibody-mediated G1-S arrest of human renal clear cell carcinoma Caki-2 is associated with retinoblastoma substrate dephosphorylation, cyclin-dependent kinase 2 reduction, p27(kip1) enhancement, and disruption of binding to the extracellular matrix. Clin Cancer Res. 2006;12(11 Pt 1):3470–7. https://doi.org/10.1158/1078-0432.CCR-06-0361. 5. Inamoto T, Yamada T, Ohnuma K, Kina S, Takahashi N, Yamochi T, Inamoto S, Katsuoka Y, Hosono O, Tanaka H, Dang NH, Morimoto C, et al. Humanized anti-CD26 monoclonal antibody as a treatment for malignant mesothelioma tumors. Clin Cancer Res. 2007;13(14):4191–200. https://doi.org/10.1158/1078-0432.CCR-07-0110.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|