Development of a novel BRCAness score that predicts response to PARP inhibitors

Author:

Oshi Masanori,Gandhi Shipra,Wu Rongrong,Asaoka Mariko,Yan Li,Yamada Akimitsu,Yamamoto Shinya,Narui Kazutaka,Chishima Takashi,Ishikawa Takashi,Endo Itaru,Takabe KazuakiORCID

Abstract

Abstract Background BRCAness is a characteristic feature of homologous recombination deficiency (HRD) mimicking BRCA gene mutation in breast cancer. We hypothesized that a measure to quantify BRCAness that causes synthetic lethality in BRCA mutated tumors will identify responders to PARP inhibitors. Methods A total of 6753 breast cancer patients from 3 large independent cohorts were analyzed. A score was generated by transcriptomic profiling using gene set variation analysis algorithm on 34 BRCA1-mutation related genes selected by high AUC levels in ROC curve between BRCA1 mutation and wildtype breast cancer. Results The score was significantly associated with BRCA1 mutation, high mutation load and intratumoral heterogeneity as expected, as well as with high HRD, DNA repair and MKi67 expression regardless of BRCA mutations. High BRCAness tumors enriched not only DNA repair, but also all five Hallmark cell proliferation-related gene sets. High BRCAness tumors were significantly associated with higher cytolytic activity and with higher anti-cancerous immune cell infiltration. Not only did the breast cancer cell lines with BRCA-mutation show high score, but even the other cells in human breast cancer tumor microenvironment were contributing to the score. The BRCAness score was the highest in triple-negative breast cancer consistently in all 3 cohorts. BRCAness was associated with response to chemotherapy and correlated strongly with response to PARP inhibitor in both triple-negative and ER-positive/HER2-negative breast cancer. Conclusions We established a novel BRCAness score using BRCA-mutation-related gene expressions and found that it associates with DNA repair and predicts response to PARP inhibitors regardless of BRCA mutation.

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry (medical),Clinical Biochemistry,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3