Author:
Cui Jinfeng,Li Li,Liu Ning,Hou Wenhong,Dong Yinjun,Yang Fengchang,Zhu Shouhui,Li Jun,Yuan Shuanghu
Abstract
AbstractBackgroundDefinitive chemoradiotherapy (dCRT) is a standard treatment option for locally advanced stage inoperable esophageal squamous cell carcinoma (ESCC). Evaluating clinical outcome prior to dCRT remains challenging. This study aimed to investigate the predictive power of computed tomography (CT)-based radiomics combined with genomics for the treatment efficacy of dCRT in ESCC patients.MethodsThis retrospective study included 118 ESCC patients who received dCRT. These patients were randomly divided into training (n = 82) and validation (n = 36) groups. Radiomic features were derived from the region of the primary tumor on CT images. Least absolute shrinkage and selection operator (LASSO) regression was conducted to select optimal radiomic features, and Rad-score was calculated to predict progression-free survival (PFS) in training group. Genomic DNA was extracted from formalin-fixed and paraffin-embedded pre-treatment biopsy tissue. Univariate and multivariate Cox analyses were undertaken to identify predictors of survival for model development. The area under the receiver operating characteristic curve (AUC) and C-index were used to evaluate the predictive performance and discriminatory ability of the prediction models, respectively.ResultsThe Rad-score was constructed from six radiomic features to predict PFS. Multivariate analysis demonstrated that the Rad-score and homologous recombination repair (HRR) pathway alterations were independent prognostic factors correlating with PFS. The C-index for the integrated model combining radiomics and genomics was better than that of the radiomics or genomics models in the training group (0.616 vs. 0.587 or 0.557) and the validation group (0.649 vs. 0.625 or 0.586).ConclusionThe Rad-score and HRR pathway alterations could predict PFS after dCRT for patients with ESCC, with the combined radiomics and genomics model demonstrating the best predictive efficacy.
Funder
Natural Science Foundation of Qinghai Province
National Natural Science Foundation of China
Jinan Clinical Medicine Science and Technology Innovation Plan
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Clinical Biochemistry,Molecular Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献