Detection method of absence seizures based on Resnet and bidirectional GRU

Author:

Li Lijun,Zhang Hengxing,Liu Xiaomei,Li Jie,Li Lei,Liu DanORCID,Min Jieqing,Zhu Ping,Xia Huan,Wang Shangkun,Wang Li

Abstract

Abstract Background Epilepsy is a common chronic neurological disease. Its repeated seizure attacks have a great negative impact on patients’ physical and mental health. The diagnosis of epilepsy mainly depends on electroencephalogram (EEG) signals detection and analysis. There are two main EEG signals detection methods for epilepsy. One is the detection based on abnormal waveform, the other is the analysis of EEG signals based on the traditional machine learning. The feature extraction method of the traditional machine learning is difficult to capture the high-dimension information between adjacent sequences. Methods In this paper, redundant information was removed from the data by Gaussian filtering, downsampling, and short-time Fourier transform. Convolutional Neural Networks (CNN) was used to extract the high-dimensional features of the preprocessed data, and then Gate Recurrent Unit (GRU) was used to combine the sequence information before and after, to fully integrate the adjacent information EEG signals and improve the accuracy of the model detection. Results Four models were designed and compared. The experimental results showed that the prediction model based on deep residual network and bidirectional GRU had the best effect, and the test accuracy of the absence epilepsy test set reached 92%. Conclusions The prediction time of the network is only 10 sec when predicting four-hour EEG signals. It can be effectively used in EEG software to provide reference for doctors in EEG analysis and save doctors’ time, which has great practical value.

Funder

Construction and application demonstration of an intelligent diagnosis and treatment system for children's diseases based on a smart medical platform

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Neurology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3