Withdrawal seizures vs on-medication seizures: an intracranial EEG recording case report

Author:

Khateb Mohamed,Grinfeld Anat,Weiler-Sagie Michal,Herskovitz MosheORCID

Abstract

Abstract Background It has long been an interesting question of whether withdrawal seizures in epileptic patients differ from habitual seizures in terms of semiology and electrophysiology. Case presentation Here, we addressed this issue in a 40 year-old woman with drug-resistant focal epilepsy monitored by presurgical intracranial EEG. As a part of this routine pre-operative investigation, anti-seizure medications (ASMs) were halted; as a result, multiple withdrawal seizures were recorded before ASM readministration. During 4 days of invasive monitoring, we noticed three different phases in seizure organization: Acute withdrawal seizure (AWS): The first recorded seizure 10h after the implantation; the stabilized withdrawal seizures (SWS): seven habitual seizures recorded from 24h post implantation to readministration of ASMs; and the Non-withdrawal seizures (NWS): ten seizures recorded 24h after readministration of ASMs. AWS and SWS had the same semiology and same epileptic network, but the propagation time from the temporal pole to the para-hippocampal gyrus (PHG) and hippocampus ranged from no latency in AWS to up to 50 s in SWS. NWS were electrographic seizures, without any apparent clinical manifestation. Seizure onset in this type of seizure, as in the first two types, was in the temporal pole. However, NWS could last up to 3 min without involving the PHG or hippocampus. Conclusions We concluded that in acute withdrawal seizures the propagation time of epileptic activity is significantly reduced without affecting ictal organization network or semiology. Furthermore, ASM in this case had a remarkable influence on propagation rather than initiation of epileptic activity.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Antiepileptic-drugs;Reactions Weekly;2023-01-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3