Author:
Feng Yan,Zhang Cuirong,Wei Zihan,Li Guoyan,Gan Yajing,Liu Chao,Deng Yanchun
Abstract
Abstract
Background
Epilepsy is a paroxysmal disorder of the brain, caused by an imbalance of neuronal excitation and inhibition. Glutamate is the most important excitatory neurotransmitter in the brain and plays an important role in epileptogenesis. Mutations in genes at any step/component of the glutamate metabolic pathway may lead to the development of epilepsy or epileptic encephalopathy.
Methods
Clinical history of 3 epilepsy patients with genetic variations of the glutamate metabolism pathway was collected. Electroencephalogram recording and magnetic resonance imaging were performed in each patient. We also reviewed recent literature for a variety of the genetic variations involved in epilepsy.
Results
Case 1 was a SLC1A2 mutation-carrier diagnosed with developmental and epileptic encephalopathy (DEE) 41, whose seizures decreased after start of the ketogenic diet. Case 2 carried a GRIN2A gene mutation and was seizure-free for three years after taking levetiracetam and vitamin B6. Case 3 was a GRIN2B mutation-carrier diagnosed with DEE 27, who seizures diminished after taking oxcarbazepine.
Conclusions
Preclinical and clinical evidence supports the therapeutic potential of glutamatergic signaling-targeting treatments for epilepsy. More studies are needed to discover novel DEE-related genetic mutations in the glutamate metabolic pathway.
Funder
National Key research and development program precision medicine project-cohort study
Publisher
Springer Science and Business Media LLC
Subject
Neurology (clinical),Neurology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献