Identification of the anti-breast cancer targets of triterpenoids in Liquidambaris Fructus and the hints for its traditional applications

Author:

Qian Ping,Mu Xiao-Ting,Su Bing,Gao Lu,Zhang Dong-Fang

Abstract

Abstract Background Liquidambaris Fructus is the infructescences of Liquidambar formosana Hance and it has been used to treat some breast disease in Traditional Chinese Medicine. In the previous study we found the anti-breast cancer effect of triterpenoid in Liquidambaris Fructus. This study is a further investigation of the triterpenoids in Liquidambaris Fructus and aims to identify their anti-breast cancer targets, meanwhile, to estimate the rationality of the traditional applications of Liquidambaris Fructus. Methods Triterpenoids in Liquidambaris Fructus were isolated and their structures were identified by NMR spectrums. Potential targets of these triterpenoids were predicted using a reverse pharmacophore mapping strategy. Associations between these targets and the therapeutic targets of breast cancer were analyzed by constructing protein-protein interaction network, and targets played important roles in the network were identified using Molecular Complex Detection method. Binding affinity between the targets and triterpenoids was studied using molecular docking method. Gene ontology enrichment analysis was conducted to reveal the biological process and signaling pathways that the identified targets were involved in. Results Thirteen triterpenoids were identified and 6 of them were the first time isolated from Liquidambaris Fructus. Predicted ADME properties revealed a good druggability of these triterpenoids. We identified 18 protein targets which were closely related to breast cancer progression, especially triple-negative, basal-like or advanced stage breast cancers. The triterpenoids could bind with these targets as their inhibitors: hydrophobic skeleton is a favorable factor for them to stabilize at binding site and polar C17- or C3- substituent was necessary for binding. GO enrichment analysis indicated that inhibition of protein tyrosine kinases autophosphorylation might be the primary mechanism for the anti-breast cancer effect of the triterpenoids, and ErbB4 and EGFR were the most relevant targets. Conclusions The study revealed that triterpenoids from Liquidambaris Fructus might exert anti-breast cancer effect by directly inhibit multiple protein targets and signaling pathways, especially ErbB4 and EGFR and related pathways. This study also brings up another hint that the traditional applications of Liquidambaris Fructus on hypogalactia should be reassessed systematically because it might suppress rather than promote lactation by inhibiting the activity of ErbB4.

Funder

Natural Science Foundation of Liaoning Province

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Reference76 articles.

1. Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, vol. I. Beijing: China Medical Science and Technology Press; 2015.

2. Li Y, Gong X, Ding X. Research on the law of Chinese medicine in the treatment of early lactation acute mastitis. Chin J Ethnomed Ethnopharm. 2019;28:8–10,16.

3. Xu J, Wang F, Li Z, Chen J. Randomized parallel control study of Chupixiaoyi granule combined drug lavage treatment on nipple discharge mammary duct ectasia. J Pract Tradit Chin Intern Med. 2017;31:70–3.

4. Du X. The flat by Sanjie powder in the treatment of breast cystic hyperplasia randomized parallel controlled study. J Pract Tradit Chin Intern Med. 2013;27:12–3.

5. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3