Identification of core genes associated with the anti-atherosclerotic effects of Salvianolic acid B and immune cell infiltration characteristics using bioinformatics analysis

Author:

Jin Zheng,Zhao Huanyi,Luo Yuan,Li Xiushen,Cui Jiayan,Yan Jing,Yang Pingzhen

Abstract

Abstract Background Atherosclerosis (AS) is the greatest contributor to pathogenesis of atherosclerotic cardiovascular disease (ASCVD), which is associated with increased mortality and reduced quality of life. Early intervention to mitigate AS is key to prevention of ASCVD. Salvianolic acid B (Sal B) is mainly extracted from root and rhizome of Salvia Miltiorrhiza Bunge, and exerts anti-atherosclerotic effect. The purpose of this study was to screen for anti-AS targets of Sal B and to characterize immune cell infiltration in AS. Methods We identified targets of Sal B using SEA (http://sea.bkslab.org/) and SIB (https://www.sib.swiss/) databases. GSE28829 and GSE43292 datasets were obtained from Gene Expression Omnibus database. We identified differentially expressed genes (DEGs) and performed enrichment analysis. Weighted gene co-expression network analysis (WGCNA) was used to determine the most relevant module associated with atherosclerotic plaque stability. Intersecting candidate genes were evaluated by generating receiver operating characteristic (ROC) curves and molecular docking. Then, immune cell types were identified using CIBERSOFT and single-sample gene set enrichment analysis (ssGSEA), the relationship between candidate genes and immune cell infiltration was evaluated. Finally, a network-based approach to explore the candidate genes relationship with microRNAs (miRNAs) and Transcription factors (TFs). Results MMP9 and MMP12 were been selected as candidate genes from 64 Sal B-related genes, 81 DEGs and turquoise module with 220 genes. ROC curve results showed that MMP9 (AUC = 0.815, P<0.001) and MMP12 (AUC = 0.763, P<0.001) were positively associated with advanced atherosclerotic plaques. The results of immune infiltration showed that B cells naive, B cells memory, Plasma cells, T cells CD8, T cells CD4 memory resting, T cells CD4 memory activated, T cells regulatory (Tregs), T cells gamma delta, NK cells activated, Monocytes, and Macrophages M0 may be involved in development of AS, and the candidate genes MMP9 and MMP12 were associated with these immune cells to different degrees. What’ s more, miR-34a-5p and FOXC1, JUN maybe the most important miRNA and TFs. Conclusion The anti-AS effects of Sal B may be related to MMP9 and MMP12 and associated with immune cell infiltration, which is expected to be used in the early intervention of AS.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3