Author:
Wang Xiao-feng,Xiao Hong-he,Wu Yu-tong,Kong Liang,Chen Ji-cong,Yang Jing-xian,Hu Xiao-le
Abstract
Abstract
Background
Alzheimer’s disease (AD) is the most common dementia worldwide, and there is still no satisfactory drug or therapeutic strategy. Polygala tenuifolia is a traditional Chinese medicine with multiple neuroprotective effects. In present study, we investigated the effects of three active constituents [3,6′-disinapoyl sucrose (DISS), onjisaponin B (OB) and tenuifolin (TEN)] of Polygala tenuifolia (PT) on the proliferation and differentiation of neural stem cells (NSCs) to identify the potential active constituent of PT promoting hippocampal neurogenesis.
Methods
NSCs were isolated from hippocampi of newborn C57BL/6 mice, and transfected with mutant amyloid precursor protein (APP) gene to establish an AD cell model (APP-NSCs). 3-(4,5- Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays were performed, and the proliferation and differentiation of NSCs were assessed by neurosphere formation assay, 5-bromo-2′-deoxyuridine (BrdU) incorporation assay and immunofluorescence (IF) staining analysis. APP/PS1 transgenic mice were administrated with the potential active constituent DISS for 4 weeks. Morris water maze (MWM), Nissl staining assay and IF staining assays were carried out to evaluate the cognitive function, neural damages and hippocampal neurogenesis, respectively.
Results
DISS exerted the optimal ability to strengthen APP-NSCs proliferation and neuronal differentiation, followed by OB and TEN. Furthermore, DISS treatment for 4 weeks strikingly rescued the cognitive deficits, neuronal injures, and neurogenesis disorder in adult APP/PS1 transgenic mice.
Conclusions
Our findings demonstrated that DISS is the constituent of PT that triggers the most potent increase of hippocampal neurogenesis in our mouse model of AD.
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine
Reference61 articles.
1. Sung PS, Lin PY, Liu CH, Su HC, Tsai KJ. Neuroinflammation and neurogenesis in Alzheimer's disease and potential therapeutic approaches. Int J Mol Sci. 2020;21(3):1–23.
2. Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol. 2020;140(4):417–47.
3. Kandimalla R, Manczak M, Fry D, Suneetha Y, Sesaki H, Reddy PH. Reduced dynamin-related protein 1 protects against phosphorylated tau-induced mitochondrial dysfunction and synaptic damage in Alzheimer's disease. Hum Mol Genet. 2016;25(22):4881–97.
4. Manczak M, Kandimalla R, Yin X, Reddy PH. Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer's disease. Hum Mol Genet. 2018;27(8):1332–42.
5. Young JK. Neurogenesis makes a crucial contribution to the neuropathology of Alzheimer's disease. J Alzheimers Dis Rep. 2020;4(1):365–71.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献