Phytochemical analysis, in vitro and in silico effects from Alstonia boonei De Wild stem bark on selected digestive enzymes and adipogenesis in 3T3-L1 preadipocytes

Author:

Anyanwu Gabriel O.,Ejike Uju D.,Gyebi Gideon A.,Rauf Khalid,Nisar-Ur-Rehman ,Iqbal Jamshed,Zaib Sumera,Usunobun Usunomena,Onyeneke Eusebius C.,Alotaibi Badriyah S.,Batiha Gaber El-Saber

Abstract

Abstract Background Obesity is a global health issue arising from the unhealthy accumulation of fat. Medicinal plants such as Alstonia boonei stem bark has been reported to possess body weight reducing effect in obese rats. Thus, this study sought to investigate the in vitro and in silico effects of fractions from Alstonia boonei stem bark on selected obesity-related digestive enzymes and adipogenesis in 3T3-L1 preadipocytes. Method Two fractions were prepared from A. boonei: crude alkaloid fraction (CAF) and crude saponin fraction (CSF), and their phytochemical compounds were profiled using Liquid chromatography with tandem mass spectrometry (LCMS/MS). The fractions were assayed for inhibitory activity against lipase, α-amylase and α-glucosidase, likewise their antiadipogenic effect in 3T3-L1 adipocytes. The binding properties with the 3 enzymes were also assessed using in silico tools. Results Eleven alkaloids and six saponin phytochemical compounds were identified in the CAF and CSF using LCMS/MS. The CAF and CSF revealed good inhibitory activity against pancreatic lipase enzyme, but weak and good activity against amylase respectively while only CSF had inhibitory activity against α-glucosidase. Both fractions showed antiadipogenic effect in the clearance of adipocytes and reduction of lipid content in 3T3-L1 adipocytes. The LCMS/MS identified compounds (41) from both fractions demonstrated good binding properties with the 3 enzymes, with at least the top ten compounds having higher binding energies than the reference inhibitors (acarbose and orlistat). The best two docked compounds to the three enzymes were firmly anchored in the substrate binding pockets of the enzymes. In a similar binding pattern as the reference acarbose, Estradiol-17-phenylpropionate (-11.0 kcal/mol) and 3α-O-trans-Feruloyl-2 α -hydroxy-12-ursen-28-oic acid (-10.0 kcal/mol) interacted with Asp197 a catalytic nucleophile of pancreatic amylase. Estradiol-17-phenylpropionate (-10.8 kcal/mol) and 10-Hydroxyyohimbine (-10.4 kcal/mol) interacted with the catalytic triad (Ser152-Asp176-His263) of pancreatic lipase while Estradiol-17-phenylpropionate (-10.1 kcal/mol) and 10-Hydroxyyohimbine (-9.9 kcal/mol) interacted with Asp616 and Asp518 the acid/base and nucleophilic residues of modelled α-glucosidase. Conclusion The antiobesity effect of A. boonei was displayed by both the alkaloid and saponin fractions of the plant via inhibition of pancreatic lipase and adipogenesis.

Funder

The World Academy of Sciences

COMSATS Institute of Information Technology

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3