Exploring the bone sparing effects of postbiotics in the post-menopausal rat model

Author:

Montazeri-Najafabady Nima,Ghasemi Younes,Dabbaghmanesh Mohammad Hossein,Ashoori Yousef,Talezadeh Pedram,Koohpeyma Farhad,Abootalebi Seyedeh Narjes,Gholami Ahmad

Abstract

Abstract Background Post-menopausal osteoporosis is a concern of health organizations, and current treatments do not seem enough. Postbiotics as bioactive compounds produced by probiotics may be an attractive alternative for bone health. In this study, we prepared, formulated, and compared the effects of cell lysate and supernatant of five native probiotic strains (Lactobacillus acidophilus, Lactobacillus reuteri, Lactobacillus casei, Bifidobacterium longum, and Bacillus coagulans) in ovariectomized (OVX) rats. Methods The probiotic strains were isolated, and their cell-free supernatants and biomasses as postbiotics were extracted and formulated using standard microbial processes. The Sprague-Dawley rats were fed by 1 × 109 CFU/ml/day postbiotic preparations for 4 weeks immediately after ovariectomy. Dual-energy X-ray absorptiometry (DEXA) scans were accomplished to evaluate femur, spine, and tibia BMD. The serum biochemical markers [calcium, phosphorus, and alkaline phosphatase] were assessed. Results Postbiotics could considerably improve the global and femur area in OVX rats. In the case of global bone mineral density (BMD), Lactobacillus casei lysate and supernatant, Bacillus coagulans lysate and supernatant, lysate of Bifidobacterium longum and Lactobacillus acidophilus, and Lactobacillus reuteri supernatant significantly increased BMD. We found Bacillus coagulans supernatant meaningfully enriched tibia BMD. Conclusion Postbiotic could ameliorate bone loss resulting from estrogen deficiency. Also, the effects of postbiotics on different bone sites are strain-dependent. More clinical studies need to explore the optimal administrative dose and duration of the specific postbiotics in protecting bone loss.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3