Network pharmacology-based mechanism analysis of dauricine on the alleviating Aβ-induced neurotoxicity in Caenorhabditis elegans

Author:

Zhang Ranran,Huang Xiaoyan,Zhou Chunling,Zhang Qian,Jia Dongsheng,Xie Xiaoliang,Zhang Ju

Abstract

Abstract Background Dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid isolated from the root of Menispermum dauricum DC, exhibits promising anti-Alzheimer’s disease (AD) effects, but its underlying mechanisms remain inadequately investigated. This paper aims to identify potential targets and molecular mechanisms of DAU in AD treatment. Methods Network pharmacology and molecular docking simulation method were used to screen and focus core targets. Various transgenic Caenorhabditis elegans models were chosen to validate the anti-AD efficacy and mechanism of DAU. Results There are 66 potential DAU-AD target intersections identified from 100 DAU and 3036 AD-related targets. Subsequent protein-protein interaction (PPI) network analysis identified 16 core targets of DAU for anti-AD. PIK3CA, AKT1 and mTOR were predicted to be the central targets with the best connectivity through the analysis of “compound-target-biological process-pathway network”. Molecular docking revealed strong binding affinities between DAU and PIK3CA, AKT1, and mTOR. In vivo experiments demonstrated that DAU effectively reduced paralysis in AD nematodes caused by Aβ aggregation toxicity, downregulated expression of PIK3CA, AKT1, and mTOR homologues (age-1, akt-1, let-363), and upregulated expression of autophagy genes and the marker protein LGG-1. Simultaneously, DAU increased lysosomal content and enhanced degradation of the autophagy-related substrate protein P62. Thioflavin T(Th-T)staining experiment revealed that DAU decreased Aβ accumulation in AD nematodes. Further experiments also confirmed DAU’s protein scavenging activity in polyglutamine (polyQ) aggregation nematodes. Conclusion Collectively, the mechanism of DAU against AD may be related to the activation of the autophagy-lysosomal protein clearance pathway, which contributes to the decrease of Aβ aggregation and the restoration of protein homeostasis.

Funder

the central government guides local science and technology development fund projects of Hebei Province

the postdoctoral research project of Hebei Province

Science and technology innovation project of Hebei Academy of Agriculture and Forestry Sciences

Natural Science Foundation of Hebei Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3