Huaier attenuates the adverse effects of pyroptosis by regulating the methylation of rat mesangial cells: an in vitro study

Author:

Geng Wenjia,Tu Can,Chen Dahao,Lu Zhaoyu,Mao Wei,Zhu Hanyu

Abstract

Abstract Background Pyroptosis is a highly programmed inflammatory cell death process that represents an innate immune response. In this study, the occurrence of pyroptosis in rat mesangial cells (RMCs) and the effect of Huaier (Trametes robiniophia Murr) on this process were investigated. Methods RMCs were incubated with OX7 antibodies (0.5 μg/ml, 2.5 μg/ml, 10 μg/ml), normal rat serum (NRS) and Huaier (1 mg/ml, 5 mg/ml, 10 mg/ml). RMC morphology was observed under a light microscope and by immunofluorescence. Lactate dehydrogenase (LDH) release was assessed using the CytoTox 96 Non-Radioactive Cytotoxicity Assay Kit. Western blot assays were performed, and then the RMCs were incubated with the methylase DNMT3B and the demethylase 5-aza-2′-deoxycytidine. Results Morphological, LDH, immunofluorescence and western blot analyses showed that RMCs were lysed when stimulated with OX7 antibodies and NRS. RMC lysis released inflammatory cytokines (interleukin-18, interleukin-1β, monocyte chemoattractant protein-1 and intracellular adhesion molecule-1), and Huaier protected RMCs by controlling lysis and the levels of inflammatory cytokines. Lysis was mediated by pyroptosis due to the positive expression of GSDME. The methylase DNMT3B reduced the expression of GSDME induced by OX7 together with NRS. Furthermore, Huaier significantly suppressed the expression of GSDME, which was increased by 5-aza-2’-deoxycytidine. Conclusions Pyroptosis might occur in RMCs, and Huaier can protect RMCs by upregulating the methylation of a group of molecules.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3