Identification and characterization of the Cucurbitacins, a novel class of small-molecule inhibitors of Tropomyosin receptor kinase a

Author:

Zhong Yueling,Xu Hong,Zhong Yi,Zhang Xuemiao,Zeng Ting,Li Limei,Xu Gaojie,Li Minhui,Liu Jin,Yang TaiORCID

Abstract

Abstract Background NGF-TrkA is well known to play a key role in propagating and sustaining pruritogenic signals, which form the pathology of chronic pruritus. Inhibition of NGF-TrkA is a known strategy for the treatment of pruritus. In the present paper, we describe the identification, in vitro characterization, structure–activity analysis, and inhibitory evaluation of a novel TrkA inhibitory scaffold exemplified by Cucurbitacins (Cus). Methods Cus were identified as TrkA inhibitors in a large-scale kinase library screen. To obtain structural models of Cus as TrkA inhibitors, AutoDock was used to explore their binding to TrkA. Furthermore, PC12 cell culture systems have been used to study the effects of Cus and traditional Chinese medicinal plants (Tian Gua Di and bitter gourd leaf) extracts on the kinase activity of TrkA. Results Cus block the phosphorylation of TrkA on several tyrosine sites, including Tyr490, Tyr674/675, and Tyr785, and inhibit downstream Akt and MAPK phosphorylation in response to NGF in PC12 cell model systems. Furthermore, traditional Chinese medicinal plants (Tian Gua Di and bitter gourd leaf) containing Cu extracts were shown to inhibit the phosphorylation of TrkA and Akt. These data reveal mechanisms, at least partly, of the anti-pruritus bioactivity of Cus. Conclusion Taken together, with the recent discovery of the important role of TrkA as a therapeutic target, Cus could be the basis for the design of improved TrkA kinase inhibitors, which could someday help treat pruritus.

Funder

Scientific Research Fund of the National Natural Science Foundation of China

Chengdu Science and Technology Bureau

Scientific Research Fund of the Sichuan Provincial Education Department

Scientific Research Fund of Chengdu Medical College

Scientific Research Fund of CMA - L’OREAL China Skin/Hair

National Undergraduates Innovating Experimentation Project

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3