Identification of 3,3′-O-dimethylellagic acid and apigenin as the main antiplasmodial constituents of Endodesmia calophylloides Benth and Hymenostegia afzelii (Oliver.) Harms

Author:

Keumoe Rodrigue,Koffi Jean Garba,Dize Darline,Fokou Patrick Valère Tsouh,Tchamgoue Joseph,Ayong Lawrence,Ndjakou Bruno Lenta,Sewald Norbert,Ngameni Bathelemy,Boyom Fabrice Fekam

Abstract

Abstract Background Endodesmia calophylloides and Hymenostegia afzelii belong to the Guttiferae and Caesalpiniaceae plant families with known uses in African ethno-medicine to treat malaria and several other diseases. This study aimed at identifying antiplasmodial natural products from selected crude extracts from H. afzelii and E. calophylloides and to assess their cytotoxicity. Methods The extracts from H. afzelii and E. calophylloides were subjected to bioassay-guided fractionation to identify antiplasmodial compounds. The hydroethanol and methanol stem bark crude extracts, fractions and isolated compounds were assessed for antiplasmodial activity against the chloroquine-sensitive 3D7 and multi-drug resistant Dd2 strains of Plasmodium falciparum using the SYBR green I fluorescence-based microdilution assay. Cytotoxicity of active extracts, fractions and compounds was determined on African green monkey normal kidney Vero and murine macrophage Raw 264.7 cell lines using the Resazurin-based viability assay. Results The hydroethanolic extract of H. afzelii stem bark (HasbHE) and the methanolic extract of E. calophylloides stem bark (EcsbM) exhibited the highest potency against both Pf3D7 (EC50 values of 3.32 ± 0.15 μg/mL and 7.40 ± 0.19 μg/mL, respectively) and PfDd2 (EC50 of 3.08 ± 0.21 μg/mL and 7.48 ± 0.07 μg/mL, respectively) strains. Both extracts showed high selectivity toward Plasmodium parasites (SI > 13). The biological activity-guided fractionation led to the identification of five compounds (Compounds 1–5) from HasbHE and one compound (Compound 6) from EcsbM. Of these, Compound 1 corresponding to apigenin (EC50Pf3D7, of 19.01 ± 0.72 μM and EC50PfDd2 of 16.39 ± 0.52 μM), and Compound 6 corresponding to 3,3′-O-dimethylellagic acid (EC50Pf3D7 of 4.27 ± 0.05 μM and EC50PfDd2 of 1.36 ± 0.47 μM) displayed the highest antiplasmodial activities. Interestingly, both compounds exhibited negligible cytotoxicity against both Vero and Raw 264.7 cell lines with selectivity indices greater than 9. Conclusions This study led to the identification of two potent antiplasmodial natural compounds, 3,3′-O-dimethylellagic acid and apigenin that could serve as starting points for further antimalarial drug discovery.

Funder

YaBiNaPA

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3