Triptolide mitigates the inhibition of osteogenesis induced by TNF-α in human periodontal ligament stem cells via the p-IκBα/NF-κB signaling pathway: an in-vitro study

Author:

Chen Hao,Zhang Lina,Du Simeng,Yang Daiwei,Cui Xiaobin,Zhao Huadong,Zhang Jun

Abstract

Abstract Background Triptolide is a widely utilized natural anti-inflammatory drug in clinical practice. Aim of this study was to evaluate effects of triptolide on hPDLSCs osteogenesis in an inflammatory setting and to investigate underlying mechanisms. Methods Using the tissue block method to obtain hPDLSCs from extracted premolar or third molar. Flow cytometry, osteogenic and adipogenic induction were carried out in order to characterise the features of the cells acquired. hPDLSC proliferative activity was assessed by CCK-8 assay to determine the effect of TNF-α and/or triptolide. The impact of triptolide on the osteogenic differentiation of hPDLSCs was investigated by ALP staining and quantification. Osteogenesis-associated genes and proteins expression level were assessed through PCR and Western blotting assay. Finally, BAY-117,082 was used to study the NF-κB pathway. Results In the group treated with TNF-α, there was an elevation in inflammation levels while osteogenic ability and the expression of both osteogenesis-associated genes and proteins decreased. In the group co-treated with TNF-α and triptolide, inflammation levels were reduced and osteogenic ability as well as the expression of both osteogenesis-associated genes and proteins were enhanced. At the end of the experiment, both triptolide and BAY-117,082 exerted similar inhibitory effects on the NF-κB pathway. Conclusion The osteogenic inhibition of hPDLSCs by TNF-α can be alleviated through triptolide, with the involvement of the p-IκBα/NF-κB pathway in this mechanism.

Funder

Shenzhen Fundamental Research Program

Province Natural Science Foundation of Shandong Province, China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3