Hepatocellular Carcinoma cells: activity of Amygdalin and Sorafenib in Targeting AMPK /mTOR and BCL-2 for anti-angiogenesis and apoptosis cell death

Author:

El-Sewedy Tarek,Salama Afrah FatthiORCID,Mohamed Amro E.,Elbaioumy Nashwa M.,El-Far Ali H.,Albalawi Aisha Nawaf,Elmetwalli AlaaORCID

Abstract

Abstract Background Sorafenib (Sor) is the only approved multikinase inhibitor indicated for the treatment of HCC. Previous studies have shown that amygdalin (Amy) possesses anticancer activities against several cancer cell lines; we suggested that these compounds might disrupt AMPK/mTOR and BCL-2. Therefore, the current study used integrated in vitro and in silico approaches to figure out Amy and Sor’s possible synergistic activity in targeting AMPK/mTOR and BCL-2 for anti-angiogenesis and apoptosis cell death in HepG2 cells. Results Notably, Amy demonstrated exceptional cytotoxic selectivity against HepG2 cells in comparison to normal WI-38 cells (IC50 = 5.21 mg/ml; 141.25 mg/ml), respectively. In contrast, WI-38 cells were far more sensitive to the toxicity of Sor. A substantial synergistic interaction between Amy and Sor was observed (CI50 = 0.56), which was connected to cell cycle arrest at the S and G2/M stages and increased apoptosis and potential necroptosis. Amy and Sor cotreatment resulted in the highest glutathione levels and induction of pro-autophagic genes AMPK, HGMB1, ATG5, Beclin 1, and LC3, suppressed the mTOR and BCL2 anti-apoptotic gene. Finally, the docking studies proposed that Amy binds to the active site of the AMPK enzyme, thus inhibiting its activity. This inhibition of AMPK ultimately leads to inhibition of mTOR and thus induces apoptosis in the HepG2 cells. Conclusion Although more in vivo research using animal models is needed to confirm the findings, our findings contribute to the evidence supporting Amy’s potential anticancer effectiveness as an alternative therapeutic option for HCC.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3