Delphinidins from Maqui Berry (Aristotelia chilensis) ameliorate the subcellular organelle damage induced by blue light exposure in murine photoreceptor-derived cells

Author:

Yamazaki Kanta,Ishida Kodai,Otsu Wataru,Muramatsu Aomi,Nakamura Shinsuke,Yamada Wakana,Tsusaki Hideshi,Shimoda Hiroshi,Hara Hideaki,Shimazawa Masamitsu

Abstract

Abstract Background Blue light exposure is known to induce reactive oxygen species (ROS) production and increased endoplasmic reticulum stress, leading to apoptosis of photoreceptors. Maqui berry (Aristotelia chilensis) is a fruit enriched in anthocyanins, known for beneficial biological activities such as antioxidation. In this study, we investigated the effects of Maqui berry extract (MBE) and its constituents on the subcellular damage induced by blue light irradiation in mouse retina-derived 661W cells. Methods We evaluated the effects of MBE and its main delphinidins, delphinidin 3-O-sambubioside-5-O-glucoside (D3S5G) and delphinidin 3,5-O-diglucoside (D3G5G), on blue light-induced damage on retinal cell line 661W cells. We investigated cell death, the production of ROS, and changes in organelle morphology using fluorescence microscopy. The signaling pathway linked to stress response was evaluated by immunoblotting in the whole cell lysates or nuclear fractions. We also examined the effects of MBE and delphinidins against rotenone-induced mitochondrial dysfunction. Results Blue light-induced cell death, increased intracellular ROS generation and mitochondrial fragmentation, decreased ATP-production coupled respiration, caused lysosomal membrane permeabilization, and increased ATF4 protein level. Treatment with MBE and its main constituents, delphinidin 3-O-sambubioside-5-O-glucoside and delphinidin 3,5-O-diglucoside, prevented these defects. Furthermore, MBE and delphinidins also protected 661W cells from rotenone-induced cell death. Conclusions Maqui berry may be a useful protective agent for photoreceptors against the oxidative damage induced by exposure to blue light. Graphical abstract

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. Cruickshanks KJ, Klein R, Klein BE, Nondahl DM. Sunlight and the 5-year incidence of early age-related maculopathy: the beaver dam eye study. Arch Ophthalmol. 2001;119(2):246–50.

2. Kuse Y, Ogawa K, Tsuruma K, Shimazawa M, Hara H. Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light. Sci Rep. 2014;4:5223.

3. Ooe E, Tsuruma K, Kuse Y, Kobayashi S, Shimazawa M, Hara H. The involvement of ATF4 and S-opsin in retinal photoreceptor cell damage induced by blue LED light. Mol Vis. 2017;23:52–9.

4. Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674.

5. Godley BF, Shamsi FA, Liang FQ, Jarrett SG, Davies S, Boulton M. Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem. 2005;280(22):21061–6.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3