Author:
Mezerji Zahra kadkhoda,Boshrouyeh Reza,Razavi Seyedehfarnaz Hafezian,Ghajari Shaghayegh,Hajiha Hasti,Shafaei Negin,Karimi Ehsan,Oskoueian Ehsan
Abstract
Abstract
Background
Microencapsulation technology is the fundamental delivery system for encapsulating the natural bioactive compounds especially phenolic in order to developing bioavailability, stability and controlling release. This study was conducted to determine the antibacterial and health-promoting potential of the phenolic rich extract (PRE)-loaded microcapsules obtained from Polygonum bistorta root as a dietary phytobiotic in mice challenged by enteropathogenic Escherichia coli (E. coli).
Method
The PRE was obtained from Polygonum bistorta root using fractionation by different polarity solvents and the highest PRE was encapsulated by the combination of modified starch, maltodextrin, and whey protein concentrate as wall materials using a spray dryer. Then, the physicochemical characterization (particle size, zeta potential, Morphology and polydispersity index) of microcapsules have been assessed. For the invivo study, 30 mice at five treatment were designed and antibacterial properties were analyzed. Furthermore, relative fold changes in the ileum population of E. coli was investigated using Real time PCR.
Results
The encapsulation of PRE resulted in the production of phenolic enriched extract-loaded microcapsules (PRE-LM) with a mean diameter of 330 nm and relatively high entrapment efficiency (87.2% w/v). The dietary supplementation of PRE-LM improved weight gain, liver enzymes, gene expression, morphometric characteristics of the ileum and decreased the population of E. coli present in the ileum significantly (p < 0.05).
Conclusion
Our funding suggested PRE-LM as a promising phytobiotic against E. coli infection in mice.
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine
Reference59 articles.
1. Ndomou SCH, Djikeng FT, Teboukeu GB, Doungue HT, Foffe HAK, Tiwo CT, Womeni HMJJoA. Research F: Nutritional value, phytochemical content, and antioxidant activity of three phytobiotic plants from west Cameroon. J Agri Food Res. 2021;3:100105.
2. Cushnie T, Lamb A. Antimicrobial activity of flavonoids. Int J Antimicrob Agents. 2005;26(5):343–56.
3. Shamsudin S, Selamat J, Abdul Shomad M, Ab Aziz MF, Haque Akanda MJJoFQ. Antioxidant properties and characterization of heterotrigona itama honey from various botanical origins according to their polyphenol compounds. 2022;2022:1–14.
4. Voronkova M, Vysochina G. Bistorta Scop. genus (Polygonaceae) chemical composition and biological activity. Chem Sustain Dev. 2014;22:207–12.
5. Intisar A, Zhang L, Luo H, Kiazolu JB, Zhang R, Zhang W. Anticancer constituents and cytotoxic activity of methanol-water extract of Polygonum bistorta L. Afr J Tradit Complement Altern Med. 2013;10(1):53–9.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献