Formulation of Neem oil-loaded solid lipid nanoparticles and evaluation of its anti-Toxoplasma activity

Author:

Nemati Sara,Mohammad Rahimi Hanieh,Hesari Zahra,Sharifdini Meysam,Jalilzadeh Aghdam Nooshin,Mirjalali HamedORCID,Zali Mohammad Reza

Abstract

Abstract Background Toxoplasmosis is caused by an intracellular zoonotic protozoan, Toxoplasma gondii, which could be lethal in immunocompromised patients. This study aimed to synthesize Neem oil-loaded solid lipid nanoparticles (NeO-SLNs) and to evaluate the anti-Toxoplasma activity of this component. Methods The NeO-SLNs were constructed using double emulsification method, and their shape and size distribution were evaluated using transmission electron microscope (TEM) and dynamic light scattering (DLS), respectively. An MTT assay was employed to evaluate the cell toxicity of the component. The anti-Toxoplasma activity of NeO-SLNs was investigated using vital (trypan-blue) staining. Anti-intracellular Toxoplasma activity of NeO-SLNs was evaluated in T. gondii-infected Vero cells. Results The TEM analysis represented round shape NeO-SLNs with clear and stable margins. DLS analysis showed a mean particle size 337.6 nm for SLNs, and most of nanoparticles were in range 30 to 120 nm. The cell toxicity of NeO-SLNs was directly correlated with the concentration of the component (P-value = 0.0013). The concentration of NeO-SLNs, which was toxic for at least 50% of alive T. gondii (cytotoxic concentration (CC50)), was > 10 mg/mL. The ability of NeO-SLNs to kill Toxoplasma was concentration-dependent (P-value < 0.0001), and all concentrations killed at least 70% of alive tachyzoites. Furthermore, the viability of T. gondii- infected Vero cells was inversely correlated with NeO-SLNs concentrations (P-value = 0.0317), and in the concentration 100 μg/mL at least 75% of T. gondii- infected Vero cells remained alive. Conclusions Overall, our findings demonstrated that the NeO-SLNs was able to kill T. gondii tachyzoites in concentration 100 μg/mL with a cell toxicity lower than 20%. Such results suggest that employing SLNs as carrier for NeO can effectively kill T. gondii tachyzoites with acceptable cell toxicity. Our findings also showed that SLNs capsulation of the NeO can lead to prolonged release of the extract, suggesting that NeO-SLNs could be also employed to clear cyst stages, which should be further investigated in animal models.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3