Astragalus polysaccharide restores insulin secretion impaired by lipopolysaccharides through the protein kinase B /mammalian target of rapamycin/glucose transporter 2 pathway

Author:

Ren Xiaodan,Dai Ying,Shan Mengya,Zheng Jing,Zhang Zhongyi,Shen Tao

Abstract

Abstract Background Lipopolysaccharide (LPS)-induced dysfunction of pancreatic β-cells leads to impaired insulin (INS) secretion. Astragalus polysaccharide (APS) is a bioactive heteropolysaccharide extracted from Astragalus membranaceus and is a popular Chinese herbal medicine. This study aimed to elucidate the mechanisms by which APS affects INS secretion from β-cells under LPS stress. Methods Rat insulinoma (INS-1) cells were treated with LPS at a low, medium, or high concentration of APS. Glucose-stimulated insulin secretion (GSIS) was evaluated using an enzyme-linked immunosorbent assay (ELISA). Transcriptome sequencing was used to assess genome-wide gene expression. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to determine the signaling pathways affected by APS. Quantitative reverse transcription–polymerase chain reaction (qRT-PCR) was performed to evaluate the gene expression of glucose transporter 2 (GLUT2), glucokinase (GCK), pancreatic duodenal homeobox-1 (PDX-1), and INS. Western blot analysis was used to detect the protein expression of phosphorylated protein kinase B (p-Akt), total Akt (t-Akt), phosphorylated mammalian target of rapamycin (p-mTOR), total mTOR (t-mTOR), and GLUT2. Results LPS decreased GLUT2, GCK, PDX-1, and INS expression and reduced GSIS. These LPS-induced decreases in gene expression and GSIS were restored by APS treatment. In addition, transcriptome sequencing in combination with KEGG enrichment analysis revealed changes in the INS signaling pathway following APS treatment. LPS decreased p-Akt and p-mTOR expression, which was restored by APS treatment. The restorative effects of APS on GSIS as well as on the expression of GLUT2, GCK, PDX-1, and INS were abolished by treatment with the Akt inhibitor MK2206 or the mTOR inhibitor rapamycin (RPM). Conclusions APS restored GSIS in LPS-stimulated pancreatic β-cells by activating the Akt/mTOR/GLUT2 signaling pathway.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3