Predicting herb-disease associations using network-based measures in human protein interactome

Author:

Wang Seunghyun,Lee Hyun Chang,Lee Sunjae

Abstract

Abstract Background Natural herbs are frequently used to treat diseases or to relieve symptoms in many countries. Moreover, as their safety has been proven for a long time, they are considered as main sources of new drug development. However, in many cases, the herbs are still prescribed relying on ancient records and/or traditional practices without scientific evidences. More importantly, the medicinal efficacy of the herbs has to be evaluated in the perspective of MCMT (multi-compound multi-target) effects, but most efforts focus on identifying and analyzing a single compound experimentally. To overcome these hurdles, computational approaches which are based on the scientific evidences and are able to handle the MCMT effects are needed to predict the herb-disease associations. Results In this study, we proposed a network-based in silico method to predict the herb-disease associations. To this end, we devised a new network-based measure, WACP (weighted average closest path length), which not only quantifies proximity between herb-related genes and disease-related genes but also considers compound compositions of each herb. As a result, we confirmed that our method successfully predicts the herb-disease associations in the human protein interactome (AUROC = 0.777). In addition, we observed that our method is superior than the other simple network-based proximity measures (e.g. average shortest and closest path length). Additionally, we analyzed the associations between Brassica oleracea var. italica and its known associated diseases more specifically as case studies. Finally, based on the prediction results of the WACP, we suggested novel herb-disease pairs which are expected to have potential relations and their literature evidences. Conclusions This method could be a promising solution to modernize the use of the natural herbs by providing the scientific evidences about the molecular associations between the herb-related genes targeted by multiple compounds and the disease-related genes in the human protein interactome.

Funder

Gwangju Institute of Science and Technology

Ministry of Science and ICT, South Korea

Ministry of Health and Welfare

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3