Distinct anti-proliferative effects of herbal melanin on human acute monocytic leukemia THP-1 cells and embryonic kidney HEK293 cells

Author:

El-Obeid Adila,Alajmi Hala,Harbi Mashael,Yahya Wesam Bin,Al-Eidi Hamad,Alaujan Monira,Haseeb Adil,Trivilegio Thadeo,Alhallaj Alshaimaa,Alghamdi Saleh,Ajlouni Abdul-Wali,Matou-Nasri SabineORCID

Abstract

Abstract Background Herbal melanin (HM) is a dark pigment extracted from the seed coat of Nigella sativa L. and known to exert biological effects via toll-like receptor 4 (TLR4). Recently, TLR4 was described as involved in natural programmed cell death (apoptosis). Tumor and embryonic cells are used as in vitro cellular models for drug and anti-cancer agent screening. To date, no cytotoxic studies have been reported of HM in TLR4-positive acute monocytic leukemia THP-1 cells compared to TLR4-negative human embryonic kidney HEK293 cells. Methods We studied the anti-proliferative effects of several HM concentrations on THP-1 and HEK293 cells by evaluating cell viability using the CellTiter-Glo® luminescent assay, assessing the TLR4 expression level, determining the apoptotic status, and analyzing the cell cycle distribution using flow cytometry. Apoptotic pathways were investigated using mitochondrial transition pore opening, caspase activity assays and immunoblot technology. Results Low HM concentrations did not affect THP-1 cell viability, but high HM concentrations (62.5–500 μg/mL) did decrease THP-1 cell viability and induced G0/G1 phase cell cycle arrest. Only at the highest concentration (500 μg/mL), HM slightly increased the TLR4 expression on the THP-1 cell surface, concomitantly upregulated TLR4 whole protein and gene expression, and induced apoptosis in THP-1 cells via activation of the extrinsic and intrinsic pathways. No change of apoptotic status was noticed in TLR4-negative HEK293 cells, although HM decreased HEK293 cell viability and induced cell growth arrest in the G2 phase. Conclusion HM exerts distinct anti-proliferative effects on human acute monocytic leukemia and embryonic kidney cells mainly through cell cycle interference in a TLR4-independent manner and through apoptosis induction in a TLR4-dependent manner, as observed in only the THP-1 cells.

Funder

King Abdullah International Medical Research Center

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3