HPLC-ESI/MS-MS characterization of compounds in Dolomiaea costus extract and evaluation of cytotoxic and antiviral properties: molecular mechanisms underlying apoptosis-inducing effect on breast cancer

Author:

El-Nashar Heba A. S.,Eldahshan Omayma A.,Fattah Nasra F Abdel,Loutfy Samah A,Abdel-Salam Ibrahim M

Abstract

Abstract Background Dolomiaea costus (syn: Saussurea costus; Family Asteraceae) occupies an important place in the traditional Chinese medicinal plants and is prescribed for a wide range of disorders. The current study aimed to tentatively identify the phytoconstituents of D. costus extract and to explore antiproliferative activity against human breast cancer cells and its possible apoptotic mechanism along with antiviral activity against human adenovirus 5 (Adv-5). Methods The phytoconstituents of 70% ethanol extract of D. costus were assessed using HPLC/ESI-MS/MS technique. The cell viability was investigated against breast cancer cell line (MCF-7) via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Mechanistically, the apoptotic effects on the Bax, Bcl2 and Caspase 3 were determined via quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR). Further, the antiviral activity was assessed against Adv-5 based on virucidal and adsorption mechanisms. Results The HPLC/MS analysis of the extract revealed tentative identification of twenty compounds of polyphenolic nature, mainly flavonoids, lignans, coumarins, and anthocyanidins. The plant extract showed a cytotoxic effect against MCF-7 and Vero cells with IC50 values of 15.50 and 44 µg/ml, respectively, indicating its aggressiveness against the proliferation of breast cancer cells as confirmed by apoptotic genes expression which revealed upregulation of Bax and Caspase 3 but further insight analysis is needed to explore exact mechanistic pathway. Antiviral activity against Adv-5 was observed at a non-toxic concentration of the tested extract. Conclusions Such observations against human breast cancer and viral replication supported further studies for nanoformulations in drug delivery systems as targeting therapy and in vivo studies before biomedical applications.

Funder

The Science, Technology & Innovation Funding Authority

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3