Hepatoprotective effects of gamma-aminobutyric acid-enriched fermented Hovenia dulcis extract on ethanol-induced liver injury in mice

Author:

Park Na-Hye,Lee Seung-Jin,Mechesso Abraham Fikru,Boby Naila,Yixian Quah,Yoon Woong-Kyu,Lee Sam-Pin,Lee Jong-Suk,Park Seung-ChunORCID

Abstract

Abstract Background Various extracts of Hovenia dulcis have been commonly used in Asia for cases of alcohol-related disorders. Fermentation is reported to enhance the level and biological activities of various bio-constituents of plant extracts. Therefore, this study was undertaken to evaluate the effects of fermented H. dulcis extract (FHDE) on ethanol-induced liver injury in mice. Methods FHDE was prepared using Bacillus subtilis and Lactobacillus plantarum. The effects of FHDE on ethanol-induced liver injury were evaluated in C57BL/6 N CrSlc mice. A mixed feed preparation containing the fermented extract with and without ethanol was given to mice for 29 days, according to its group. At the end of the experiment, blood and liver samples were collected from all mice in the group. Plasma biochemical analysis and histopathological investigation were performed to evaluate the impacts of treatment on the biomarkers of hepatic damage and inflammatory changes. Besides, the expression of genes that regulate the activities of enzymes associated with alcohol metabolism, antioxidant activity, and fatty acid oxidation was assessed using a quantitative real-time polymerase chain reaction. Moreover, the amino acid contents and the active ingredients of the extract were evaluated before and after fermentation. Results Fermentation resulted in a marked increase and decrease in the amount of Gamma-Amino-n-butyric acid (GABA) and glutamic acid, respectively. FHDE enhanced the body weight gain of mice compared to ethanol. Besides, plasma levels of triglyceride, low-density lipoprotein, the activities of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were significantly (P < 0.05) reduced in the FHDE-treated groups relative to the ethanol-treated control. FHDE upregulated the expression of genes associated with enzymes involved in alcohol dehydrogenation (Adh1 and Aldh2), antioxidant activity (SOD and CAT), and fatty acid oxidation (PPAR-α and PGC-1α). However, the expressions of Cytochrome peroxidase Cyp2E1 and genes related to lipogenesis (SREBP-1c, FAS, SCD-1, and ACC) were significantly (P < 0.05) downregulated following treatment with the FHDE. Histopathological investigation demonstrated a slight degree of inflammatory cell infiltration and occasional fatty changes in the FHDE-treated groups. Conclusion The GABA-enriched fermented H. dulcis extract prevented ethanol-induced hepatic damage by enhancing the antioxidant defense system, fatty acid oxidation, and reducing lipogenesis.

Funder

Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries

Kyungpook National University Development Project

Ministry of SMEs and Startups

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3