Hydroalcoholic extract and seed of Foeniculum vulgare improve folliculogenesis and total antioxidant capacity level in F1 female mice offspring

Author:

Pourjafari Fahimeh,Haghpanah TaherehORCID,Nematollahi-Mahani Seyed Noreddin,Pourjafari Fariba,Ezzatabadipour MassoodORCID

Abstract

Abstract Background Foeniculum vulgare (fennel) is traditionally suggested for the fertility improvement in Iranian lore due to its antioxidant and phytoestrogen compounds. The present study aimed to investigate the effects of fennel seed and its hydroalcoholic extract on the serum total antioxidant capacity (TAC) and folliculogenesis in offspring exposed to either of the treatments in utero and 56 days after birth (PND 56). Methods Pregnant NMRI mice were randomly divided into 5 groups of 7: extract-treated groups received 500 and 1000 mg/kg/day fennel extract (FE), seed-treated groups received 500 and 1000 mg/kg/day fennel seed (FS), and the control group (CTL) received no treatment. The treatments started from pregnancy day 1 and continued until PND 56. Body and right ovary weights and ovary dimensions were recorded. Hematoxylin and eosin stained ovary sections were prepared to calculate the proportion of different follicles. The level of TAC in the serums was also measured by fluorescence recovery after photo bleaching. Results A marked rise in the body and ovary weights of treated mice was observed compared to the CTL group. The mean number of primordial, primary, pre-antral, and pre-ovulatory follicles as well as corpus luteum size in the treated offspring was significantly higher compared to those of CTL offspring. The atretic follicle number was nonsignificantly lower in either of the treatment groups compared with that in the CTL. However, treatment of animals with 500 mg/kg FE showed a more pronounced effect. Animals in FS500, FE500 and FE1000 groups had a significantly higher level of serum TAC compared to the CTL group. Conclusions Fennel extract and seed administration in pregnancy and lactation period improve offspring’s folliculogenesis. Higher level of TAC in the serum of offspring might have positively altered the folliculogenesis milieu.

Funder

Kerman University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3