Reversal of cisplatin triggered neurotoxicity by Acacia hydaspica ethyl acetate fraction via regulating brain acetylcholinesterase activity, DNA damage, and pro-inflammatory cytokines in the rodent model

Author:

Afsar Tayyaba,Razak Suhail,Almajwal Ali

Abstract

Abstract Background Cisplatin (CisPT) is a chemotherapeutic that outcome in adverse effects including neurotoxicity. We examined the efficacy of hydaspica ethyl acetate extract (AHE) against CisPT-prompted neurotoxicity. Methods Group I: Distilled water; Group II: CisPT (12 mg/kg b.w. i.p) on the 13th day of treatment. Group III: received AHE (400 mg/kg b.w) orally for 16 days. Group IV and V received 200 and 400 mg/kg b.w AHE orally for 16 days while CisPT injection on day 13, respectively. Group VI: received Silymarin (100 mg/kg b.w) orally for 16 days and CP (12 mg/kg b.w., i.p.) on day 13. TNF-α, IL6, brain acetylcholinesterase activity (AChE), oxidative trauma markers, genotoxicity, antioxidant enzymes, and morphological alterations in cerebral hemispheres were inspected. Results AHE administration before CisPT considerably reduced both tissue TNF-α and IL 6 expressions compared to CisPT treated group in a dose-dependent manner. AHE treatment (400 mg/kg b.w) significantly ameliorated brain AChE activity. Brain tissue MDA, H2O2, and NO content were markedly (p < 0.001) elevated after CisPT inoculation while a noticeable (p < 0.001) diminution was observed in AHE treatment groups. AHE treatment significantly (p < 0.001) improved brain antioxidant defense in a dose-dependent manner. Furthermore, AHE efficiently recused CisPT to induce DNA damage in brain tissue as revealed by ladder assay and DNA fragmentation patterns. Histopathological findings revealed severe neurodegenerations in CisPT treated group, however, AHE treatment noticeably precluded morphological alterations and neuron damages induced by CisPT. Conclusion A. hydaspica AHE extract may be provided as a prospective adjuvant that precludes CisPT-induced neurotoxicity due to its radical scavenging and antioxidant potential.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3