Abstract
Abstract
Background
Chloranthus serratus (Chloranthaceae) has been used to treat bruises, rheumatoid and bone pain. However, the anti-inflammatory mechanisms of C. serratus in vitro have not been fully elucidated. The present study aimed to explore the anti-inflammatory activity and potential mechanisms of C. serratus’s separated part of water (CSSPW) in lipopolysaccharide (LPS)-induced RAW264.7 cells.
Methods
The concentrations of CSSPW were optimized by CCK-8 method. Nitric oxide (NO) content was detected by one-step method. The levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA). Gene expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was detected by real-time quantitative PCR (qPCR). Immunofluorescence and DCFH-DA fluorescent probes were used to detect p65 nuclear translocation and reactive oxygen species (ROS) content, respectively. Western blotting was used to assay the protein expression of mitogen-activated protein kinases (MAPK), nuclear factor-kappa B (NF-κB) and nuclear transcription factor E2 related factor 2/haem oxygenase-1 (Nrf2/HO-1) pathways.
Results
The final concentrations of 15 ng/mL, 1.5 μg/mL and 150 μg/mL were selected as low, medium and high doses of CSSPW, respectively. CSSPW treatment significantly reduced the generation of NO, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandinE2 (PGE2), iNOS mRNA and COX-2 mRNA in response to LPS stimulation. Furthermore, the protein expression of the MAPK and NF-κB pathways was suppressed by CSSPW treatment, as well as p65 nuclear translocation and ROS production. In contrast, the protein expression of the Nrf2/HO-1 pathway was markedly upregulated.
Conclusions
CSSPW exerts its anti-inflammatory effect via downregulating the production of pro-inflammatory mediators, inhibiting the activation of NF-κB and MAPK pathways, as well as activating Nrf2/HO-1 pathway in LPS-induced RAW264.7 cells.
Funder
the Anhui Provincial Department of Science and Technology for its financial support about Key Research and Development Projects
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献