Water-separated part of Chloranthus serratus alleviates lipopolysaccharide- induced RAW264.7 cell injury mainly by regulating the MAPK and Nrf2/HO-1 inflammatory pathways

Author:

Sun ShupingORCID,Du Yunyan,Yin Chuanliu,Suo Xiaoguo,Wang Rui,Xia Rongping,Zhang Xiaoping

Abstract

Abstract Background Chloranthus serratus (Chloranthaceae) has been used to treat bruises, rheumatoid and bone pain. However, the anti-inflammatory mechanisms of C. serratus in vitro have not been fully elucidated. The present study aimed to explore the anti-inflammatory activity and potential mechanisms of C. serratus’s separated part of water (CSSPW) in lipopolysaccharide (LPS)-induced RAW264.7 cells. Methods The concentrations of CSSPW were optimized by CCK-8 method. Nitric oxide (NO) content was detected by one-step method. The levels of inflammatory cytokines were determined by enzyme-linked immunosorbent assay (ELISA). Gene expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was detected by real-time quantitative PCR (qPCR). Immunofluorescence and DCFH-DA fluorescent probes were used to detect p65 nuclear translocation and reactive oxygen species (ROS) content, respectively. Western blotting was used to assay the protein expression of mitogen-activated protein kinases (MAPK), nuclear factor-kappa B (NF-κB) and nuclear transcription factor E2 related factor 2/haem oxygenase-1 (Nrf2/HO-1) pathways. Results The final concentrations of 15 ng/mL, 1.5 μg/mL and 150 μg/mL were selected as low, medium and high doses of CSSPW, respectively. CSSPW treatment significantly reduced the generation of NO, tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandinE2 (PGE2), iNOS mRNA and COX-2 mRNA in response to LPS stimulation. Furthermore, the protein expression of the MAPK and NF-κB pathways was suppressed by CSSPW treatment, as well as p65 nuclear translocation and ROS production. In contrast, the protein expression of the Nrf2/HO-1 pathway was markedly upregulated. Conclusions CSSPW exerts its anti-inflammatory effect via downregulating the production of pro-inflammatory mediators, inhibiting the activation of NF-κB and MAPK pathways, as well as activating Nrf2/HO-1 pathway in LPS-induced RAW264.7 cells.

Funder

the Anhui Provincial Department of Science and Technology for its financial support about Key Research and Development Projects

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3