Author:
Chou Meng-Han,Chen Yu-Hsu,Cheng Ming-Te,Chiang Hung-Chi,Chen Hou-Wen,Wang Ching-Wei
Abstract
Abstract
Background
Acemannan is an acetylated polysaccharide of Aloe vera extract with antimicrobial, antitumor, antiviral, and antioxidant activities. This study aims to optimize the synthesis of acemannan from methacrylate powder using a simple method and characterize it for potential use as a wound-healing agent.
Methods
Acemannan was purified from methacrylated acemannan and characterized using high-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FTIR), and 1H-nuclear magnetic resonance (NMR). 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays were performed to investigate the antioxidant activity of acemannan and its effects on cell proliferation and oxidative stress damage, respectively. Further, a migration assay was conducted to determine the wound healing properties of acemannan.
Results
We successfully optimized the synthesis of acemannan from methacrylate powder using a simple method. Our results demonstrated that methacrylated acemannan was identified as a polysaccharide with an acetylation degree similar to that in A. vera, with the FTIR revealing peaks at 1739.94 cm−1 (C = O stretching vibration), 1370 cm−1 (deformation of the H-C–OH bonds), and 1370 cm−1 (C–O–C asymmetric stretching vibration); 1H NMR showed an acetylation degree of 1.202. The DPPH results showed the highest antioxidant activity of acemannan with a 45% radical clearance rate, compared to malvidin, CoQ10, and water. Moreover, 2000 µg/mL acemannan showed the most optimal concentration for inducing cell proliferation, while 5 µg/mL acemannan induced the highest cell migration after 3 h. In addition, MTT assay findings showed that after 24 h, acemannan treatment successfully recovered cell damage due to H2O2 pre-treatment.
Conclusion
Our study provides a suitable technique for effective acemannan production and presents acemannan as a potential agent for use in accelerating wound healing through its antioxidant properties, as well as cell proliferation- and migration-inducing activities.
Funder
Tri-Service General Hospital
Taoyuan General Hospital, Ministry Health and Welfare
Ministry of Science and Technology of Taiwan
Ministry of National Defense—Medical Affairs Bureau
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine