Abstract
Abstract
Background
Arctium lappa L. root (burdock root) has long been recommended for the treatment of different diseases in traditional Chinese medicine. Burdock root possesses anti-oxidative, anti-inflammatory, anti-cancer, and anti-microbial activities. The aim of the study was to elucidate whether aqueous extract of burdock root regulates mesenchymal stem cell proliferation and differentiation.
Methods
Human bone marrow-derived mesenchymal stem cells in 2D high density culture and in 3D micromass pellets were treated with chondrogenic induction medium and chondral basal medium in the absence or presence of aqueous extract of burdock root. The chondrogenic differentiation was accessed by staining glucosaminoglycans, immunostaining SOX9 and type II collagen and immuonblotting of SOX9, aggrecan and type II collagen.
Results
Treatment of aqueous extract of burdock root increased the cell proliferation of hMSCs. It did not have significant effect on osteogenic and adipogenic differentiation, but significantly enhanced chondrogenic induction medium-induced chondrogenesis. The increment was dose dependent, as examined by staining glucosaminoglycans, SOX9, and type II collagen and immunobloting of SOX9, aggrecan and type II collagen in 2D and 3D cultures. In the presence of supplemental materials, burdock root aqueous extract showed equivalent chondrogenic induction capability to that of TGF-β.
Conclusions
The results demonstrate that aqueous extract of Arctium lappa L. root promotes chondrogenic medium-induced chondrogenic differentiation. The aqueous extract of burdock root can even be used alone to stimulate chondrogenic differentiation. The study suggests that the aqueous extract of burdock root can be used as an alternative strategy for treatment purposes.
Funder
Ministry of Science and Technology, Taiwan
National Cheng Kung University Hospital
Chiayi Chang Gung Memorial Hospital
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献