Aqueous extract of Arctium lappa L. root (burdock) enhances chondrogenesis in human bone marrow-derived mesenchymal stem cells

Author:

Wu King-Chuen,Weng Hung-Kai,Hsu Yun-Shang,Huang Pin-Jia,Wang Yang-KaoORCID

Abstract

Abstract Background Arctium lappa L. root (burdock root) has long been recommended for the treatment of different diseases in traditional Chinese medicine. Burdock root possesses anti-oxidative, anti-inflammatory, anti-cancer, and anti-microbial activities. The aim of the study was to elucidate whether aqueous extract of burdock root regulates mesenchymal stem cell proliferation and differentiation. Methods Human bone marrow-derived mesenchymal stem cells in 2D high density culture and in 3D micromass pellets were treated with chondrogenic induction medium and chondral basal medium in the absence or presence of aqueous extract of burdock root. The chondrogenic differentiation was accessed by staining glucosaminoglycans, immunostaining SOX9 and type II collagen and immuonblotting of SOX9, aggrecan and type II collagen. Results Treatment of aqueous extract of burdock root increased the cell proliferation of hMSCs. It did not have significant effect on osteogenic and adipogenic differentiation, but significantly enhanced chondrogenic induction medium-induced chondrogenesis. The increment was dose dependent, as examined by staining glucosaminoglycans, SOX9, and type II collagen and immunobloting of SOX9, aggrecan and type II collagen in 2D and 3D cultures. In the presence of supplemental materials, burdock root aqueous extract showed equivalent chondrogenic induction capability to that of TGF-β. Conclusions The results demonstrate that aqueous extract of Arctium lappa L. root promotes chondrogenic medium-induced chondrogenic differentiation. The aqueous extract of burdock root can even be used alone to stimulate chondrogenic differentiation. The study suggests that the aqueous extract of burdock root can be used as an alternative strategy for treatment purposes.

Funder

Ministry of Science and Technology, Taiwan

National Cheng Kung University Hospital

Chiayi Chang Gung Memorial Hospital

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3