Will Nigella sativa oil protect parotid glands of rats against cranium gamma irradiation? Histological and immunohistochemical evaluation

Author:

Ahmed Salwa Farid,Bakr Mostafa A.

Abstract

Abstract Background Radiation plays an essential role in treating malignancies. Radiation exposure of salivary glands often results in permanent loss of their functions; therefore, their protection against radiation is crucial. Nigella sativa oil (NSO) is a useful antioxidant against free radicals. The purpose of this study was to investigate the radio-protective effect of NSO on oxidative injury of parotid glands of gamma-irradiated rats. Methods: Twenty-eight male albino rats were divided into four groups (n = 7): Group 1: Neither NSO nor radiation, Group 2: Rats received NSO 400 mg/kg, Group 3: Rats received 15 Gy cranium gamma irradiation & Group 4: Rats received gamma irradiation and NSO. Rats were sacrificed two weeks after the last NSO dose. Histological sections of parotid glands were stained with H&E, Masson’s trichrome and anti-TGF-β antibodies. Area percentage of Masson’s trichrome and TGF-β expression was morphometrically examined. Results: Parotid glands of control and NSO groups revealed normal morphology. Gamma-irradiated glands showed loss of normal acinar architecture and slight acinar shrinkage. NSO treatment of gamma-irradiated glands preserved acinar outline and architecture. Masson’s trichrome stained samples revealed trace amounts of collagen fibers in control and NSO groups, and excessive amounts of collagen fibers in gamma-irradiated group, in addition to few collagen fibers for gamma-irradiated glands treated with NSO. Additionally, control and NSO groups showed negative TGF-β expression. Gamma-irradiated group showed high TGF-β expression, while NSO treated gamma-irradiated group showed moderate TGF-β expression. Conclusions: Gamma-irradiation adversely affected parotid glands, and in contrast, NSO seemed to positively counteract this adverse effect.

Funder

Egyptian Atomic Energy Authority

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3