Alisol A-24-acetate promotes glucose uptake via activation of AMPK in C2C12 myotubes

Author:

Chen Jia-xiang,Li Hai-yan,Li Tian-tian,Fu Wen-cheng,Du Xin,Liu Chun-hui,Zhang Wen

Abstract

Abstract Background Alisol A-24-acetate (AA-24-a) is one of the main active triterpenes isolated from the well-known medicinal plant Alisma orientale (Sam.) Juz., which possesses multiple biological activities, including a hypoglycemic effect. Whether AA-24-a is a hypoglycemic-active compound of A. orientale (Sam.) Juz. is unclear. The present study aimed to clarify the effect and potential mechanism of action of AA-24-a on glucose uptake in C2C12 myotubes. Method Effects of AA-24-a on glucose uptake and GLUT4 translocation to the plasma membrane were evaluated. Glucose uptake was determined using a 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxyglucose (2-NBDG) uptake assay. Cell membrane proteins were isolated and glucose transporter 4 (GLUT4) protein was detected by western blotting to examine the translocation of GLUT4 to the plasma membrane. To determine the underlying mechanism, the phosphorylation levels of proteins involved in the insulin and 5′-adenosine monophosphate-activated protein kinase (AMPK) pathways were examined using western blotting. Furthermore, specific inhibitors of key enzymes in AMPK signaling pathway were used to examine the role of these kinases in the AA-24-a-induced glucose uptake and GLUT4 translocation. Results We found that AA-24-a significantly promoted glucose uptake and GLUT4 translocation in C2C12 myotubes. AA-24-a increased the phosphorylation of AMPK, but had no effect on the insulin-dependent pathway involving insulin receptor substrate 1 (IRS1) and protein kinase B (PKB/AKT). In addition, the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and the AKT substrate of 160 kDa (AS160), two proteins that act downstream of AMPK, was upregulated. Compound C, an AMPK inhibitor, blocked AA-24-a–induced AMPK pathway activation and reversed AA-24-a–induced glucose uptake and GLUT4 translocation to the plasma membrane, indicating that AA-24-a promotes glucose metabolism via the AMPK pathway in vitro. STO-609, a calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor, also attenuated AA-24-a–induced glucose uptake and GLUT4 translocation. Moreover, STO-609 weakened AA-24-a-induced phosphorylation of AMPK, p38 MAPK and AS160. Conclusions These results indicate that AA-24-a isolated from A. orientale (Sam.) Juz. significantly enhances glucose uptake via the CaMKKβ-AMPK-p38 MAPK/AS160 pathway.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3