Author:
Park Jin-Sung,Kim Seung-Hyun,Han Kang-Min,Kim Yun-Soon,Kwon Euna,Paek Se-Hee,Seo Yong-Ki,Yun Jun-Won,Kang Byeong-Cheol
Abstract
Abstract
Background
Ginseng (Panax ginseng C.A. Mey.) has been used as a valuable ingredient in traditional medicine for thousands of years mostly in Asian countries due to its therapeutic effects in various diseases. Among the processed ginseng products, black ginseng is produced by a repeated steaming and drying process of ginseng roots and has been known for its superior efficacy based on high accumulation of minor ginsenosides as recently discovered. Despite its popularity and increasing use, the toxicity information on black ginseng still remained largely lacking, raising safety concerns. This study was therefore carried out to determine the repeated oral toxicity of black ginseng extract (BGE; CJ EnerG) with evaluation of cytotoxic activity as validation of its pharmacological activity for toxicity testing.
Methods
Prior to the toxicity test, we examined the cytotoxicity of BGE in six cancer cell lines derived from distinct human tissues in comparison with red ginseng extract (RGE), ginsenosides Rg5 and 20(S)-Rg3, and then assessed 28-day repeated oral toxicity in Sprague-Dawley (SD) rats using daily administration of up to 2000 mg/kg BGE.
Results
BGE showed higher cytotoxicity than RGE in all the cell lines used in this study. Interestingly, the efficacy of BGE closely resembled the cytotoxic pattern of Rg5, suggesting Rg5 as the main effector in the cytotoxic activity of BGE. During the toxicity study, BGE-treated groups showed no noticeable abnormality in clinical signs, body weight gain, food and water consumption and urinalysis. Furthermore, hematological, serum biochemical and histopathological analyses did not find any BGE-related toxicity.
Conclusion
Our findings demonstrated that BGE has broad-spectrum in vitro cytotoxic activity, and that NOAEL of BGE in SD rats is > 2000 mg/kg, providing the essential safety information for human consumption.
Publisher
Springer Science and Business Media LLC
Subject
Complementary and alternative medicine
Reference42 articles.
1. Christensen LP. Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res. 2009;55:1–99.
2. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C a Meyer. Acta Pharmacol Sin. 2008;29(9):1109–18.
3. Kim DH. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res. 2012;36(1):1–15.
4. Park JD, Rhee DK, Lee YH. Biological activities and chemistry of Saponins from Panax ginseng C. A. Meyer. Phytochem Rev. 2005;4(2):159–75.
5. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res. 2015;39(4):287–98.