Hesperidin identified from Citrus extracts potently inhibits HCV genotype 3a NS3 protease

Author:

Khan Mahim,Rauf Waqar,Habib Fazal-e-,Rahman Moazur,Iqbal Shoaib,Shehzad Aamir,Iqbal Mazhar

Abstract

Abstract Background Hepatitis C virus infection is the main cause of liver ailments across the globe. Several HCV genotypes have been identified in different parts of the world. Effective drugs for combating HCV infections are available but not affordable, particularly to infected individuals from resource-limited countries. Hence, cost-effective drugs need to be developed against important HCV drug targets. As Citrus fruits naturally contain bioactive compounds with antiviral activities, the current study was designed to identify antiviral inhibitors from Citrus fruit extracts against an important drug target, NS3 protease, of HCV genotype 3a which is found predominantly in South Asian countries. Methods The full-length NS3 protease alone and the NS3 protease domain in fusion with the cognate NS4A cofactor were expressed in Escherichia coli, and purified by chromatographic techniques. Using the purified protein as a drug target, Citrus extracts were evaluated in a FRET assay, and active ingredients, identified using ESI–MS/MS, were docked to observe the interaction with active site residues of NS3. The best interacting compound was further confirmed through the FRET assay as the inhibitor of NS3 protease. Results Fusion of the NS3 protease domain to the NS4A cofactor significantly improved the purification yield, and NS3-NS4A was functionally more active than the full-length NS3 alone. The purified protein (NS3-NS4A) was successfully employed in a validated FRET assay to evaluate 14 Citrus fruit extracts, revealing that the mesocarp extract of Citrus paradisi, and whole fruit extracts of C. sinesis, C. aurantinum, and C. reticulata significantly inhibited the protease activity of HCV NS3 protease (IC50 values of 5.79 ± 1.44 µg/mL, 37.19 ± 5.92 µg/mL, 42.62 ± 6.89 µg/mL, and 57.65 ± 3.81 µg/mL, respectively). Subsequent ESI-MSn analysis identified a flavonoid, hesperidin, abundantly present in all the afore-mentioned Citrus extracts. Importantly, docking studies suggested that hesperidin interacts with active site residues, and acts as a potent inhibitor of NS3 protease, exhibiting an IC50 value of 11.34 ± 3.83 µg/mL. Conclusions A FRET assay was developed using NS3-NS4A protease, which was successfully utilized for the evaluation of Citrus fruit extracts. Hesperidin, a compound present in the Citrus extracts, was identified as the main flavonoid, which can serve as a cost-effective potent inhibitor of NS3 protease, and could be developed as a drug for antiviral therapy against HCV genotype 3a.

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3