Torreya nucifera seed oil improves 3T3-L1 adipocyte differentiation

Author:

Koh Eunbi,Kim Boram,Choi KyungohORCID

Abstract

Abstract Background Adipose tissue is a critical regulator of lipid storage and endocrine function. Impairment of the recruitment of new adipocytes in the adipose tissue is associated with ectopic fat accumulation, diabetes and insulin resistance. Torreya nucifera, an evergreen conifer that grows in warm temperate climates, has been found to exert beneficial effects against inflammation, infection and diabetes. However, the molecular mechanisms responsible for these effects at the cellular level remain unknown. This study aimed to investigate effects of Torreya nucifera seed oil (TNSO) on 3T3-L1 adipocyte differentiation and its underlying regulatory mechanism. Methods To investigate the effects of TNSO on adipocyte differentiation, 3T3-L1 cells were induced to differentiate for 5 days in the presence of 0.75 μL/mL TNSO. Oil Red O staining and an assay for intracellular triglyceride were performed to determine the extent of lipid accumulation in 3T3-L1 cells. To elucidate the underlying mechanism of TNSO, adipogenic gene expression was analyzed using quantitative real-time PCR. Moreover, we monitored TNSO-derived activation of PPARγ and STAT3 with 3T3-L1 reporter cell lines engineered to secrete Gaussia luciferase upon the interaction of a transcription factor to its DNA binding element. Results Oil Red O staining revealed that TNSO improved the differentiation of 3T3-L1 preadipocytes into mature adipocytes. The mRNA levels of adipogenic genes, including adiponectin, fatty acid synthase (FAS) and adipocyte fatty acid-binding protein (FABP4), were upregulated and intracellular triglyceride levels increased upon TNSO treatment. We also established that adipocyte differentiation was improved by TNSO-derived activation of PPARγ and STAT3. Conclusions Our results suggest that TNSO improves adipocyte differentiation by regulating the activation of adipogenic transcription factors, indicating that it may serve as a potential treatment strategy for adipocyte dysfunction.

Funder

The university of Suwon

Publisher

Springer Science and Business Media LLC

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3