Author:
Jafari Ali Asghar,Jandaghian Ali Akbar,Rahmani Omid
Abstract
Abstract
Background
Thin and piezoelectric materials are widely used as sensors or actuators in smart structures by embedding or surface-mounted them.
Methods
This paper report on the exact, explicit solution for the transient bending of a circular functionally graded (FG) plates integrated with two uniformly distributed actuator layers made of piezoelectric material based on the classical plate theory (CPT). The material properties of the FG substrate plate are assumed to be graded in the thickness direction according to the power-law distribution in terms of the volume fractions of the constituents and the distribution of electric potential field along the thickness direction of piezoelectric layers is simulated by a quadratic function. The form of the electric potential field in the piezoelectric layer is considered such that the Maxwell static electricity equation is satisfied. The governing equations are solved for clamped and simply supported edge boundary condition of the circular plate. The solutions are expressed by elementary Bessel functions and derived via exact inverse Laplace transform.
Results and Conclusions
It is seen that the power index (g) and thickness of piezo-layer have significant effect on the deflection amplitude and natural frequency of piezo-FG plate.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Reference46 articles.
1. Abramowitz, M, & Stegun, IA. (1964). Handbook of Mathematical Functions: With Formulars, Graphs, and Mathematical Tables (Vol. 55). New York: Courier Dover Publications.
2. Alibeigloo, A. (2010). Thermoelasticity analysis of functionally graded beam with integrated surface piezoelectric layers. Composite Structures, 92(6), 1535–1543.
3. Batra, R, & Geng, T. (2002). Comparison of active constrained layer damping by using extension and shear mode piezoceramic actuators. Journal of Intelligent Material Systems and Structures, 13(6), 349–367.
4. Batra, R, & Liang, X. (1997). The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators. Computers & Structures, 63(2), 203–216.
5. Behjat, B, & Khoshravan, M. (2012). Geometrically nonlinear static and free vibration analysis of functionally graded piezoelectric plates. Composite Structures, 94(3), 874–882.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献